Suppr超能文献

药物滥用临床试验中治疗效果假设检验的缺失数据方法比较:一项蒙特卡罗模拟研究

A comparison of missing data methods for hypothesis tests of the treatment effect in substance abuse clinical trials: a Monte-Carlo simulation study.

作者信息

Hedden Sarra L, Woolson Robert F, Malcolm Robert J

机构信息

Department of Biostatistics, Bioinformatics and Epidemiology, Medical University of South Carolina, 135 Cannon Place, Charleston, SC 29425, USA.

出版信息

Subst Abuse Treat Prev Policy. 2008 Jun 3;3:13. doi: 10.1186/1747-597X-3-13.

Abstract

BACKGROUND

Missing data due to attrition are rampant in substance abuse clinical trials. However, missing data are often ignored in the presentation of substance abuse clinical trials. This paper demonstrates missing data methods which may be used for hypothesis testing.

METHODS

Methods involving stratifying and weighting individuals based on missing data pattern are shown to produce tests that are robust to missing data mechanisms in terms of Type I error and power. In this article, we describe several methods of combining data that may be used for testing hypotheses of the treatment effect. Furthermore, illustrations of each test's Type I error and power under different missing data percentages and mechanisms are quantified using a Monte-Carlo simulation study.

RESULTS

Type I error rates were similar for each method, while powers depended on missing data assumptions. Specifically, power was greatest for the weighted, compared to un-weighted methods, especially for greater missing data percentages.

CONCLUSION

Results of this study as well as extant literature demonstrate the need for standards of design and analysis specific to substance abuse clinical trials. Given the known substantial attrition rates and concern for the missing data mechanism in substance abuse clinical trials, investigators need to incorporate missing data methods a priori. That is, missing data methods should be specified at the outset of the study and not after the data have been collected.

摘要

背景

在药物滥用临床试验中,因受试者流失导致的数据缺失现象极为普遍。然而,在药物滥用临床试验的报告中,缺失数据常常被忽视。本文展示了可用于假设检验的缺失数据处理方法。

方法

基于缺失数据模式对个体进行分层和加权的方法,在第一类错误和检验效能方面,所产生的检验对缺失数据机制具有稳健性。在本文中,我们描述了几种可用于检验治疗效果假设的合并数据方法。此外,通过蒙特卡罗模拟研究,对不同缺失数据百分比和机制下各检验的第一类错误和检验效能进行了量化说明。

结果

每种方法的第一类错误率相似,而检验效能取决于缺失数据的假设。具体而言,与未加权方法相比,加权方法的检验效能最高,尤其是在缺失数据百分比更高的情况下。

结论

本研究结果以及现有文献表明,药物滥用临床试验需要特定的设计和分析标准。鉴于药物滥用临床试验中已知的高受试者流失率以及对缺失数据机制的关注,研究人员需要事先纳入缺失数据处理方法。也就是说,缺失数据处理方法应在研究开始时就予以明确,而不是在数据收集之后。

相似文献

4
Testing for robustness in Monte Carlo studies.蒙特卡罗研究中的稳健性检验。
Psychol Methods. 2000 Jun;5(2):230-40. doi: 10.1037/1082-989x.5.2.230.
6
Methods for handling missing binary data in substance use disorder trials.处理物质使用障碍试验中缺失二进制数据的方法。
Drug Alcohol Depend. 2023 Sep 1;250:110897. doi: 10.1016/j.drugalcdep.2023.110897. Epub 2023 Jul 13.
8
Dealing with missing data in multi-informant studies: A comparison of approaches.多来源研究中缺失数据的处理:方法比较。
Behav Res Methods. 2024 Oct;56(7):6498-6519. doi: 10.3758/s13428-024-02367-7. Epub 2024 Feb 28.
9
Estimating statistical power for open-enrollment group treatment trials.估计开放式群体治疗试验的统计功效。
J Subst Abuse Treat. 2011 Jan;40(1):3-17. doi: 10.1016/j.jsat.2010.07.010. Epub 2010 Sep 15.
10
Randomization in substance abuse clinical trials.药物滥用临床试验中的随机化
Subst Abuse Treat Prev Policy. 2006 Feb 6;1:6. doi: 10.1186/1747-597X-1-6.

引用本文的文献

本文引用的文献

5
Analyzing incomplete longitudinal clinical trial data.分析不完整的纵向临床试验数据。
Biostatistics. 2004 Jul;5(3):445-64. doi: 10.1093/biostatistics/5.3.445.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验