Suppr超能文献

一种用于流行病学中估计年度颗粒物浓度的基于偏最小二乘回归的区域化国家通用克里金模型。

A regionalized national universal kriging model using Partial Least Squares regression for estimating annual PM concentrations in epidemiology.

作者信息

Sampson Paul D, Richards Mark, Szpiro Adam A, Bergen Silas, Sheppard Lianne, Larson Timothy V, Kaufman Joel D

机构信息

Department of Statistics, University of Washington, Box 354322, Seattle, WA 98195-4322, USA.

出版信息

Atmos Environ (1994). 2013 Aug 1;75:383-392. doi: 10.1016/j.atmosenv.2013.04.015.

Abstract

Many cohort studies in environmental epidemiology require accurate modeling and prediction of fine scale spatial variation in ambient air quality across the U.S. This modeling requires the use of small spatial scale geographic or "land use" regression covariates and some degree of spatial smoothing. Furthermore, the details of the prediction of air quality by land use regression and the spatial variation in ambient air quality not explained by this regression should be allowed to vary across the continent due to the large scale heterogeneity in topography, climate, and sources of air pollution. This paper introduces a regionalized national universal kriging model for annual average fine particulate matter (PM) monitoring data across the U.S. To take full advantage of an extensive database of land use covariates we chose to use the method of Partial Least Squares, rather than variable selection, for the regression component of the model (the "universal" in "universal kriging") with regression coefficients and residual variogram models allowed to vary across three regions defined as West Coast, Mountain West, and East. We demonstrate a very high level of cross-validated accuracy of prediction with an overall of 0.88 and well-calibrated predictive intervals. In accord with the spatially varying characteristics of PM on a national scale and differing kriging smoothness parameters, the accuracy of the prediction varies by region with predictive intervals being notably wider in the West Coast and Mountain West in contrast to the East.

摘要

环境流行病学中的许多队列研究需要对美国各地环境空气质量的精细尺度空间变化进行准确建模和预测。这种建模需要使用小空间尺度的地理或“土地利用”回归协变量以及一定程度的空间平滑处理。此外,由于地形、气候和空气污染来源的大规模异质性,土地利用回归对空气质量的预测细节以及该回归未解释的环境空气质量空间变化应允许在整个大陆有所不同。本文介绍了一种针对美国年度平均细颗粒物(PM)监测数据的区域化全国通用克里金模型。为了充分利用广泛的土地利用协变量数据库,我们选择使用偏最小二乘法,而不是变量选择法,用于模型的回归部分(“通用克里金”中的“通用”),回归系数和残差变异函数模型允许在定义为西海岸、美国西部山区和东部的三个区域有所不同。我们展示了非常高的交叉验证预测准确性,整体R值为0.88,预测区间校准良好。与全国范围内PM的空间变化特征和不同的克里金平滑度参数一致,预测准确性因地区而异,西海岸和美国西部山区的预测区间明显比东部更宽。

相似文献

3
Satellite-Based NO2 and Model Validation in a National Prediction Model Based on Universal Kriging and Land-Use Regression.
Environ Sci Technol. 2016 Apr 5;50(7):3686-94. doi: 10.1021/acs.est.5b05099. Epub 2016 Mar 21.
5
A land use regression model using machine learning and locally developed low cost particulate matter sensors in Uganda.
Environ Res. 2021 Aug;199:111352. doi: 10.1016/j.envres.2021.111352. Epub 2021 May 24.
6
National PM and NO exposure models for China based on land use regression, satellite measurements, and universal kriging.
Sci Total Environ. 2019 Mar 10;655:423-433. doi: 10.1016/j.scitotenv.2018.11.125. Epub 2018 Nov 12.
9
National-scale exposure prediction for long-term concentrations of particulate matter and nitrogen dioxide in South Korea.
Environ Pollut. 2017 Jul;226:21-29. doi: 10.1016/j.envpol.2017.03.056. Epub 2017 Apr 8.
10
A national prediction model for PM2.5 component exposures and measurement error-corrected health effect inference.
Environ Health Perspect. 2013 Sep;121(9):1017-25. doi: 10.1289/ehp.1206010. Epub 2013 Jun 11.

引用本文的文献

2
Ultrafine Particle Mobile Monitoring Study Designs for Epidemiology: Cost and Performance Comparisons.
Environ Health Perspect. 2025 Apr;133(3-4):47010. doi: 10.1289/EHP15100. Epub 2025 Apr 23.
3
A review of geospatial exposure models and approaches for health data integration.
J Expo Sci Environ Epidemiol. 2025 Apr;35(2):131-148. doi: 10.1038/s41370-024-00712-8. Epub 2024 Sep 6.
4
Semi-supervised urban haze pollution prediction based on multi-source heterogeneous data.
Heliyon. 2024 Jun 19;10(12):e33332. doi: 10.1016/j.heliyon.2024.e33332. eCollection 2024 Jun 30.
7
Ambient air pollution and rate of spontaneous abortion.
Environ Res. 2024 Apr 1;246:118067. doi: 10.1016/j.envres.2023.118067. Epub 2023 Dec 27.
8
Evaluating low-cost monitoring designs for PM exposure assessment with a spatiotemporal modeling approach.
Environ Pollut. 2024 Feb 15;343:123227. doi: 10.1016/j.envpol.2023.123227. Epub 2023 Dec 24.
9
Association between late-life air pollution exposure and medial temporal lobe atrophy in older women.
medRxiv. 2023 Nov 29:2023.11.28.23298708. doi: 10.1101/2023.11.28.23298708.
10
Alzheimer's Related Neurodegeneration Mediates Air Pollution Effects on Medial Temporal Lobe Atrophy.
medRxiv. 2023 Nov 29:2023.11.29.23299144. doi: 10.1101/2023.11.29.23299144.

本文引用的文献

2
A national prediction model for PM2.5 component exposures and measurement error-corrected health effect inference.
Environ Health Perspect. 2013 Sep;121(9):1017-25. doi: 10.1289/ehp.1206010. Epub 2013 Jun 11.
4
Does more accurate exposure prediction necessarily improve health effect estimates?
Epidemiology. 2011 Sep;22(5):680-5. doi: 10.1097/EDE.0b013e3182254cc6.
5
National satellite-based land-use regression: NO2 in the United States.
Environ Sci Technol. 2011 May 15;45(10):4407-14. doi: 10.1021/es103578x. Epub 2011 Apr 26.
6
Creating national air pollution models for population exposure assessment in Canada.
Environ Health Perspect. 2011 Aug;119(8):1123-9. doi: 10.1289/ehp.1002976. Epub 2011 Mar 31.
7
Efficient measurement error correction with spatially misaligned data.
Biostatistics. 2011 Oct;12(4):610-23. doi: 10.1093/biostatistics/kxq083. Epub 2011 Jan 20.
8
Spatial modeling of PM10 and NO2 in the continental United States, 1985-2000.
Environ Health Perspect. 2009 Nov;117(11):1690-6. doi: 10.1289/ehp.0900840. Epub 2009 Jun 29.
9
Predicting traffic-related air pollution in Los Angeles using a distance decay regression selection strategy.
Environ Res. 2009 Aug;109(6):657-70. doi: 10.1016/j.envres.2009.06.001. Epub 2009 Jun 21.
10

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验