Miyagishima Kiyoharu J, Grünert Ulrike, Li Wei
National Eye Institute, National Institutes of Health, Bethesda, Maryland.
Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia.
Vis Neurosci. 2014 Mar;31(2):153-63. doi: 10.1017/S0952523813000308. Epub 2013 Sep 9.
Color information is encoded by two parallel pathways in the mammalian retina. One pathway compares signals from long- and middle-wavelength sensitive cones and generates red-green opponency. The other compares signals from short- and middle-/long-wavelength sensitive cones and generates blue-green (yellow) opponency. Whereas both pathways operate in trichromatic primates (including humans), the fundamental, phylogenetically ancient color mechanism shared among most mammals is blue-green opponency. In this review, we summarize the current understanding of how signals from short-wavelength sensitive cones are processed in the primate and nonprimate mammalian retina, with a focus on the inner plexiform layer where bipolar, amacrine, and ganglion cell processes interact to facilitate the generation of blue-green opponency.
在哺乳动物视网膜中,颜色信息由两条并行通路编码。一条通路比较来自长波长和中波长敏感视锥细胞的信号,并产生红绿色拮抗。另一条通路比较来自短波长和中/长波长敏感视锥细胞的信号,并产生蓝绿色(黄色)拮抗。虽然这两条通路在三色性灵长类动物(包括人类)中都起作用,但大多数哺乳动物共有的基本的、系统发育上古老的颜色机制是蓝绿色拮抗。在这篇综述中,我们总结了目前对灵长类和非灵长类哺乳动物视网膜中短波长敏感视锥细胞信号如何处理的理解,重点关注内网状层,在该层中双极细胞、无长突细胞和神经节细胞的突起相互作用,以促进蓝绿色拮抗的产生。