Suppr超能文献

哺乳动物视网膜内网层中S-视锥细胞信号的处理

Processing of S-cone signals in the inner plexiform layer of the mammalian retina.

作者信息

Miyagishima Kiyoharu J, Grünert Ulrike, Li Wei

机构信息

National Eye Institute, National Institutes of Health, Bethesda, Maryland.

Department of Ophthalmology and Save Sight Institute, The University of Sydney, Sydney, New South Wales, Australia.

出版信息

Vis Neurosci. 2014 Mar;31(2):153-63. doi: 10.1017/S0952523813000308. Epub 2013 Sep 9.

Abstract

Color information is encoded by two parallel pathways in the mammalian retina. One pathway compares signals from long- and middle-wavelength sensitive cones and generates red-green opponency. The other compares signals from short- and middle-/long-wavelength sensitive cones and generates blue-green (yellow) opponency. Whereas both pathways operate in trichromatic primates (including humans), the fundamental, phylogenetically ancient color mechanism shared among most mammals is blue-green opponency. In this review, we summarize the current understanding of how signals from short-wavelength sensitive cones are processed in the primate and nonprimate mammalian retina, with a focus on the inner plexiform layer where bipolar, amacrine, and ganglion cell processes interact to facilitate the generation of blue-green opponency.

摘要

在哺乳动物视网膜中,颜色信息由两条并行通路编码。一条通路比较来自长波长和中波长敏感视锥细胞的信号,并产生红绿色拮抗。另一条通路比较来自短波长和中/长波长敏感视锥细胞的信号,并产生蓝绿色(黄色)拮抗。虽然这两条通路在三色性灵长类动物(包括人类)中都起作用,但大多数哺乳动物共有的基本的、系统发育上古老的颜色机制是蓝绿色拮抗。在这篇综述中,我们总结了目前对灵长类和非灵长类哺乳动物视网膜中短波长敏感视锥细胞信号如何处理的理解,重点关注内网状层,在该层中双极细胞、无长突细胞和神经节细胞的突起相互作用,以促进蓝绿色拮抗的产生。

相似文献

1
Processing of S-cone signals in the inner plexiform layer of the mammalian retina.
Vis Neurosci. 2014 Mar;31(2):153-63. doi: 10.1017/S0952523813000308. Epub 2013 Sep 9.
2
Distinct synaptic mechanisms create parallel S-ON and S-OFF color opponent pathways in the primate retina.
Vis Neurosci. 2014 Mar;31(2):139-51. doi: 10.1017/S0952523813000230. Epub 2013 Jul 29.
3
Connectomic Identification and Three-Dimensional Color Tuning of S-OFF Midget Ganglion Cells in the Primate Retina.
J Neurosci. 2019 Oct 2;39(40):7893-7909. doi: 10.1523/JNEUROSCI.0778-19.2019. Epub 2019 Aug 12.
4
A circuit motif for color in the human foveal retina.
Proc Natl Acad Sci U S A. 2024 Sep 3;121(36):e2405138121. doi: 10.1073/pnas.2405138121. Epub 2024 Aug 27.
5
Amacrine cell contributions to red-green color opponency in central primate retina: a model study.
Vis Neurosci. 2007 Jul-Aug;24(4):535-47. doi: 10.1017/S0952523807070502.
6
Three distinct blue-green color pathways in a mammalian retina.
J Neurosci. 2014 Jan 29;34(5):1760-8. doi: 10.1523/JNEUROSCI.3901-13.2014.
7
Chromatic bipolar cell pathways in the mouse retina.
J Neurosci. 2011 Apr 27;31(17):6504-17. doi: 10.1523/JNEUROSCI.0616-11.2011.
9
Synaptic inputs onto small bistratified (blue-ON/yellow-OFF) ganglion cells in marmoset retina.
J Comp Neurol. 2009 Dec 10;517(5):655-69. doi: 10.1002/cne.22183.
10
Short-wavelength cone-opponent retinal ganglion cells in mammals.
Vis Neurosci. 2014 Mar;31(2):165-75. doi: 10.1017/S095252381300031X.

引用本文的文献

1
IMI 2023 Digest.
Invest Ophthalmol Vis Sci. 2023 May 1;64(6):7. doi: 10.1167/iovs.64.6.7.
2
Comparative connectomics reveals noncanonical wiring for color vision in human foveal retina.
Proc Natl Acad Sci U S A. 2023 May 2;120(18):e2300545120. doi: 10.1073/pnas.2300545120. Epub 2023 Apr 25.
3
Tissue block staining and domestic adhesive tape yield qualified integral sections of adult mouse orbits and eyeballs.
PLoS One. 2021 Aug 4;16(8):e0255363. doi: 10.1371/journal.pone.0255363. eCollection 2021.
4
Ground squirrel - A cool model for a bright vision.
Semin Cell Dev Biol. 2020 Oct;106:127-134. doi: 10.1016/j.semcdb.2020.06.005. Epub 2020 Jun 24.
5
A Color Vision Circuit for Non-Image-Forming Vision in the Primate Retina.
Curr Biol. 2020 Apr 6;30(7):1269-1274.e2. doi: 10.1016/j.cub.2020.01.040. Epub 2020 Feb 20.
6
Diverse Cell Types, Circuits, and Mechanisms for Color Vision in the Vertebrate Retina.
Physiol Rev. 2019 Jul 1;99(3):1527-1573. doi: 10.1152/physrev.00027.2018.
9
Seasonal and post-trauma remodeling in cone-dominant ground squirrel retina.
Exp Eye Res. 2016 Sep;150:90-105. doi: 10.1016/j.exer.2016.01.011. Epub 2016 Jan 22.
10
What studies of macaque monkeys have told us about human color vision.
Neuroscience. 2015 Jun 18;296:110-5. doi: 10.1016/j.neuroscience.2014.10.007. Epub 2014 Oct 17.

本文引用的文献

1
Chromatic coding from cone-type unselective circuits in the mouse retina.
Neuron. 2013 Feb 6;77(3):559-71. doi: 10.1016/j.neuron.2012.12.012.
2
Aging of human short-wave cone pathways.
Proc Natl Acad Sci U S A. 2012 Aug 14;109(33):13422-7. doi: 10.1073/pnas.1119770109. Epub 2012 Jul 30.
3
A color-coding amacrine cell may provide a blue-off signal in a mammalian retina.
Nat Neurosci. 2012 May 27;15(7):954-6. doi: 10.1038/nn.3128.
4
A non-canonical pathway for mammalian blue-green color vision.
Nat Neurosci. 2012 May 27;15(7):952-3. doi: 10.1038/nn.3127.
5
Melanopsin-based brightness discrimination in mice and humans.
Curr Biol. 2012 Jun 19;22(12):1134-41. doi: 10.1016/j.cub.2012.04.039. Epub 2012 May 24.
7
Chromatic bipolar cell pathways in the mouse retina.
J Neurosci. 2011 Apr 27;31(17):6504-17. doi: 10.1523/JNEUROSCI.0616-11.2011.
8
Synaptic inputs to two types of koniocellular pathway ganglion cells in marmoset retina.
J Comp Neurol. 2011 Aug 1;519(11):2135-53. doi: 10.1002/cne.22586.
9
The genetics of normal and defective color vision.
Vision Res. 2011 Apr 13;51(7):633-51. doi: 10.1016/j.visres.2010.12.002. Epub 2010 Dec 15.
10
Characterization of a novel large-field cone bipolar cell type in the primate retina: evidence for selective cone connections.
Vis Neurosci. 2011 Jan;28(1):29-37. doi: 10.1017/S0952523810000374. Epub 2010 Dec 15.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验