Suppr超能文献

正常与缺陷色觉的遗传学

The genetics of normal and defective color vision.

作者信息

Neitz Jay, Neitz Maureen

机构信息

University of Washington, Dept. of Ophthalmology, Seattle, WA 98195, United States.

出版信息

Vision Res. 2011 Apr 13;51(7):633-51. doi: 10.1016/j.visres.2010.12.002. Epub 2010 Dec 15.

Abstract

The contributions of genetics research to the science of normal and defective color vision over the previous few decades are reviewed emphasizing the developments in the 25years since the last anniversary issue of Vision Research. Understanding of the biology underlying color vision has been vaulted forward through the application of the tools of molecular genetics. For all their complexity, the biological processes responsible for color vision are more accessible than for many other neural systems. This is partly because of the wealth of genetic variations that affect color perception, both within and across species, and because components of the color vision system lend themselves to genetic manipulation. Mutations and rearrangements in the genes encoding the long, middle, and short wavelength sensitive cone pigments are responsible for color vision deficiencies and mutations have been identified that affect the number of cone types, the absorption spectra of the pigments, the functionality and viability of the cones, and the topography of the cone mosaic. The addition of an opsin gene, as occurred in the evolution of primate color vision, and has been done in experimental animals can produce expanded color vision capacities and this has provided insight into the underlying neural circuitry.

摘要

回顾了过去几十年遗传学研究对正常和缺陷色觉科学的贡献,重点强调自《视觉研究》上一期周年特刊以来25年的发展。通过应用分子遗传学工具,对色觉背后生物学的理解有了巨大进步。尽管负责色觉的生物学过程十分复杂,但相较于许多其他神经系统,它们更容易被研究。部分原因在于,物种内部和物种之间存在丰富的影响颜色感知的遗传变异,还因为色觉系统的组成部分适合进行基因操作。编码长、中、短波长敏感视锥色素的基因突变和重排会导致色觉缺陷,并且已经鉴定出影响视锥细胞类型数量、色素吸收光谱、视锥细胞功能和活力以及视锥镶嵌结构拓扑结构的突变。如在灵长类动物色觉进化过程中发生的那样,在实验动物中添加一个视蛋白基因可以产生扩展的色觉能力,这为潜在的神经回路提供了深入了解。

相似文献

1
The genetics of normal and defective color vision.
Vision Res. 2011 Apr 13;51(7):633-51. doi: 10.1016/j.visres.2010.12.002. Epub 2010 Dec 15.
2
New aspects of an old theme: the genetic basis of human color vision.
Am J Hum Genet. 1998 Nov;63(5):1257-62. doi: 10.1086/302127.
3
Genetics of variation in human color vision and the retinal cone mosaic.
Curr Opin Genet Dev. 2006 Jun;16(3):301-7. doi: 10.1016/j.gde.2006.04.002. Epub 2006 May 2.
4
The molecular genetics and evolution of primate colour vision.
Trends Neurosci. 1994 Jan;17(1):30-7. doi: 10.1016/0166-2236(94)90032-9.
5
Molecular genetics of human color vision.
Behav Genet. 1996 May;26(3):195-207. doi: 10.1007/BF02359380.
6
Molecular genetics of color-vision deficiencies.
Vis Neurosci. 2004 May-Jun;21(3):191-6. doi: 10.1017/s0952523804213244.
7
Genetic basis of color vision.
Int Ophthalmol Clin. 1993 Spring;33(2):141-52. doi: 10.1097/00004397-199303320-00014.
8
Functional photoreceptor loss revealed with adaptive optics: an alternate cause of color blindness.
Proc Natl Acad Sci U S A. 2004 Jun 1;101(22):8461-6. doi: 10.1073/pnas.0401440101. Epub 2004 May 17.
9
Primate photopigments and primate color vision.
Proc Natl Acad Sci U S A. 1996 Jan 23;93(2):577-81. doi: 10.1073/pnas.93.2.577.
10
Molecular basis for tetrachromatic color vision.
Comp Biochem Physiol B Biochem Mol Biol. 1995 Nov;112(3):405-14. doi: 10.1016/0305-0491(95)00085-2.

引用本文的文献

1
Color contrast adaptation and compensation in color deficiencies.
J Vis. 2025 Aug 1;25(10):17. doi: 10.1167/jov.25.10.17.
2
Achromatic loci in normal and anomalous trichromats.
J Opt Soc Am A Opt Image Sci Vis. 2025 May 1;42(5):B245-B255. doi: 10.1364/JOSAA.546890.
4
Proteomic signatures of retinal pigment epithelium-derived exosomes in myopic and non-myopic tree shrew eyes.
Front Med (Lausanne). 2025 Apr 22;12:1523211. doi: 10.3389/fmed.2025.1523211. eCollection 2025.
5
Genome-wide profiling of highly similar paralogous genes using HiFi sequencing.
Nat Commun. 2025 Mar 8;16(1):2340. doi: 10.1038/s41467-025-57505-2.
6
Looking to the Future of Viral Vectors in Ocular Gene Therapy: Clinical Review.
Biomedicines. 2025 Feb 5;13(2):365. doi: 10.3390/biomedicines13020365.
7
Temporal and spatial analysis of event-related potentials in response to color saliency differences among various color vision types.
Front Hum Neurosci. 2024 Oct 2;18:1441380. doi: 10.3389/fnhum.2024.1441380. eCollection 2024.
8
Color Maps: Facilitating the Clinical Impact of Quantitative MRI.
J Magn Reson Imaging. 2025 Apr;61(4):1572-1579. doi: 10.1002/jmri.29573. Epub 2024 Aug 23.
9
Toward an Indoor Lighting Solution for Social Jet Lag.
J Biol Rhythms. 2024 Oct;39(5):502-507. doi: 10.1177/07487304241262918. Epub 2024 Jul 31.
10
Visual evoked potentials in patients with congenital color vision deficiency.
Int Ophthalmol. 2024 Jun 24;44(1):265. doi: 10.1007/s10792-024-03229-z.

本文引用的文献

2
Functional connectivity in the retina at the resolution of photoreceptors.
Nature. 2010 Oct 7;467(7316):673-7. doi: 10.1038/nature09424.
3
The dimensionality of color vision in carriers of anomalous trichromacy.
J Vis. 2010 Jul 1;10(8):12. doi: 10.1167/10.8.12.
4
A novel mutation (Cys83Tyr) in the second zinc finger of NR2E3 in enhanced S-cone syndrome.
Graefes Arch Clin Exp Ophthalmol. 2011 Feb;249(2):201-8. doi: 10.1007/s00417-010-1482-y. Epub 2010 Aug 20.
5
Deletion of the X-linked opsin gene array locus control region (LCR) results in disruption of the cone mosaic.
Vision Res. 2010 Sep 15;50(19):1989-99. doi: 10.1016/j.visres.2010.07.009. Epub 2010 Jul 16.
6
Progressive loss of cones in achromatopsia: an imaging study using spectral-domain optical coherence tomography.
Invest Ophthalmol Vis Sci. 2010 Nov;51(11):5952-7. doi: 10.1167/iovs.10-5680. Epub 2010 Jun 23.
7
Gene therapy rescues cone function in congenital achromatopsia.
Hum Mol Genet. 2010 Jul 1;19(13):2581-93. doi: 10.1093/hmg/ddq136. Epub 2010 Apr 8.
8
9
Variable retinal phenotypes caused by mutations in the X-linked photopigment gene array.
Invest Ophthalmol Vis Sci. 2010 Aug;51(8):3884-92. doi: 10.1167/iovs.09-4592. Epub 2010 Mar 10.
10
Blue-yellow opponency in primate S cone photoreceptors.
J Neurosci. 2010 Jan 13;30(2):568-72. doi: 10.1523/JNEUROSCI.4738-09.2010.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验