Suppr超能文献

在纵向数据分析中使用多重填补法估计随机缺失数据的累积分布函数。

Using multiple imputation to estimate cumulative distribution functions in longitudinal data analysis with data missing at random.

作者信息

Dinh Phillip

机构信息

Gilead Sciences, Inc., 333 Lakeside Drive Foster City, CA 94404, USA.

出版信息

Pharm Stat. 2013 Sep-Oct;12(5):260-7. doi: 10.1002/pst.1579. Epub 2013 Jul 4.

Abstract

In longitudinal clinical studies, after randomization at baseline, subjects are followed for a period of time for development of symptoms. The interested inference could be the mean change from baseline to a particular visit in some lab values, the proportion of responders to some threshold category at a particular visit post baseline, or the time to some important event. However, in some applications, the interest may be in estimating the cumulative distribution function (CDF) at a fixed time point post baseline. When the data are fully observed, the CDF can be estimated by the empirical CDF. When patients discontinue prematurely during the course of the study, the empirical CDF cannot be directly used. In this paper, we use multiple imputation as a way to estimate the CDF in longitudinal studies when data are missing at random. The validity of the method is assessed on the basis of the bias and the Kolmogorov-Smirnov distance. The results suggest that multiple imputation yields less bias and less variability than the often used last observation carried forward method.

摘要

在纵向临床研究中,在基线期进行随机分组后,对受试者随访一段时间以观察症状的发展。感兴趣的推断可能是从基线到某一特定访视时某些实验室值的平均变化、基线后某一特定访视时达到某个阈值类别的反应者比例,或者到某个重要事件发生的时间。然而,在某些应用中,兴趣可能在于估计基线后某个固定时间点的累积分布函数(CDF)。当数据完全被观察到时,CDF可以通过经验CDF来估计。当患者在研究过程中提前退出时,经验CDF不能直接使用。在本文中,我们使用多重填补作为在纵向研究中当数据随机缺失时估计CDF的一种方法。该方法的有效性基于偏差和柯尔莫哥洛夫-斯米尔诺夫距离进行评估。结果表明,与常用的末次观察结转法相比,多重填补产生的偏差更小且变异性更小。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验