Capital Medical University, Department of Physiology, Beijing, China.
PLoS One. 2013 Aug 30;8(8):e72894. doi: 10.1371/journal.pone.0072894. eCollection 2013.
Mutations that lead to muscular dystrophy often create deficiencies in cytoskeletal support of the muscle sarcolemma causing hyperactive mechanosensitive cation channel (MSC) activity and elevated intracellular Ca(2+). Caveolae are cholesterol-rich microdomains that form mechanically deformable invaginations of the sarcolemma. Mutations to caveolin-3, the main scaffolding protein of caveolae in muscle, cause Limbe-Girdle muscular dystrophy. Using genetic and acute chemical perturbations of developing myotubes we investigated whether caveolae are functionally linked to MSCs. MSC sensitivity was assayed using suction application to patches and probe-induced indentation during whole-cell recordings. Membrane mechanical stress in patches was monitored using patch capacitance/impedance. Cholesterol depletion disrupted caveolae and caused a large increase in MSC current. It also decreased the membrane mechanical relaxation time, likely reflecting cytoskeleton dissociation from the bilayer. Reduction of Cav3 expression with miRNA also increased MSC current and decreased patch relaxation time. In contrast Cav3 overexpression produced a small decrease in MSC currents. To acutely and specifically inhibit Cav3 interactions, we made a chimeric peptide containing the antennapedia membrane translocation domain and the Cav3 scaffolding domain (A-CSD3). A-CSD3 action was time dependent initially producing a mild Ca(2+) leak and increased MSC current, while longer exposures decreased MSC currents coinciding with increased patch stiffening. Images of GFP labeled Cav3 in patches showed that Cav3 doesn't enter the pipette, showing patch composition differed from the cell surface. However, disruption via cholesterol depletion caused Cav3 to become uniformly distributed over the sarcolemma and Cav3 appearance in the patch dome. The whole-cell indentation currents elicited under the different caveolae modifying conditions mirror the patch response supporting the role of caveolae in MSC function. These studies show that normal expression levels of Cav3 are mechanoprotective to the sarcolemma through multiple mechanisms, and Cav3 upregulation observed in some dystrophies may compensate for other mechanical deficiencies.
导致肌肉萎缩症的突变常导致肌细胞膜骨架的支持不足,从而导致超活跃的机械敏感阳离子通道(MSC)活性和细胞内 Ca(2+)升高。陷窝是富含胆固醇的微区,形成肌细胞膜的机械可变形内陷。陷窝蛋白-3(肌肉陷窝的主要支架蛋白)的突变导致 Limbe-Girdle 肌肉萎缩症。我们使用发展中的肌管的遗传和急性化学扰动来研究陷窝是否与 MSC 功能相关。使用吸液应用于斑块和探针诱导的全细胞记录中的凹陷来测定 MSC 敏感性。使用斑块电容/阻抗监测斑块中的膜机械应力。胆固醇耗竭破坏陷窝并导致 MSC 电流大幅增加。它还降低了膜机械弛豫时间,可能反映了细胞骨架与双层的分离。用 miRNA 减少 Cav3 表达也增加了 MSC 电流并减少了斑块弛豫时间。相比之下,Cav3 的过表达产生了 MSC 电流的微小下降。为了急性和特异性抑制 Cav3 相互作用,我们制作了一种包含触角蛋白膜转位结构域和 Cav3 支架结构域的嵌合肽(A-CSD3)。A-CSD3 的作用最初是时间依赖性的,产生轻微的 Ca(2+)泄漏和增加的 MSC 电流,而较长的暴露时间则会降低 MSC 电流,同时增加斑块硬度。斑块中 GFP 标记的 Cav3 的图像显示,Cav3 不会进入吸管,表明斑块组成与细胞表面不同。然而,通过胆固醇耗竭引起的破坏导致 Cav3 在整个肌细胞膜上均匀分布,并且 Cav3 出现在斑块穹顶中。在不同陷窝调节条件下引起的全细胞凹陷电流反映了斑块的反应,支持陷窝在 MSC 功能中的作用。这些研究表明,正常表达水平的 Cav3 通过多种机制对肌细胞膜具有机械保护作用,而在一些肌肉萎缩症中观察到的 Cav3 上调可能补偿了其他机械缺陷。