Gregor Mendel Institute, Austrian Academy of Sciences, Dr. Bohrgasse 3, 1030, Vienna, Austria.
Cell Mol Life Sci. 2014 Mar;71(5):847-65. doi: 10.1007/s00018-013-1469-z. Epub 2013 Sep 17.
Genome organization into linear chromosomes likely represents an important evolutionary innovation that has permitted the development of the sexual life cycle; this process has consequently advanced nuclear expansion and increased complexity of eukaryotic genomes. Chromosome linearity, however, poses a major challenge to the internal cellular machinery. The need to efficiently recognize and repair DNA double-strand breaks that occur as a consequence of DNA damage presents a constant threat to native chromosome ends known as telomeres. In this review, we present a comparative survey of various solutions to the end protection problem, maintaining an emphasis on DNA structure. This begins with telomeric structures derived from a subset of prokaryotes, mitochondria, and viruses, and will progress into the typical telomere structure exhibited by higher organisms containing TTAGG-like tandem sequences. We next examine non-canonical telomeres from Drosophila melanogaster, which comprise arrays of retrotransposons. Finally, we discuss telomeric structures in evolution and possible switches between canonical and non-canonical solutions to chromosome end protection.
基因组组织成线性染色体可能代表了一个重要的进化创新,它允许了有性生命周期的发展;这个过程因此促进了核的扩张和真核基因组的复杂性增加。然而,染色体的线性对细胞内部机制构成了重大挑战。需要有效地识别和修复由于 DNA 损伤而发生的 DNA 双链断裂,这对称为端粒的天然染色体末端构成了持续的威胁。在这篇综述中,我们对各种端保护问题的解决方案进行了比较调查,重点放在 DNA 结构上。这从一组原核生物、线粒体和病毒衍生的端粒结构开始,然后进展到含有 TTAGG 样串联序列的高等生物表现出的典型端粒结构。接下来,我们研究了果蝇中的非典型端粒,它包含逆转录转座子的阵列。最后,我们讨论了端粒结构在进化中的作用,以及在端粒末端保护的典型和非典型解决方案之间可能发生的转变。