Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.
Trends Genet. 2020 Apr;36(4):232-242. doi: 10.1016/j.tig.2020.01.007. Epub 2020 Feb 12.
Telomeres ensure chromosome length homeostasis and protection from catastrophic end-to-end chromosome fusions. All eukaryotes require this essential, strictly conserved telomere-dependent genome preservation. However, recent evolutionary analyses of mammals, plants, and flies report pervasive rapid evolution of telomere proteins. The causes of this paradoxical observation - that unconserved machinery underlies an essential, conserved function - remain enigmatic. Indeed, these fast-evolving telomere proteins bind, extend, and protect telomeric DNA, which itself evolves slowly in most systems. We hypothesize that the universally fast-evolving subtelomere - the telomere-adjacent, repetitive sequence - is a primary driver of the 'telomere paradox'. Under this model, radical sequence changes in the subtelomere perturb subtelomere-dependent, telomere functions. Compromised telomere function then spurs adaptation of telomere proteins to maintain telomere length homeostasis and protection. We propose an experimental framework that leverages both protein divergence and subtelomeric sequence divergence to test the hypothesis that subtelomere sequence evolution shapes recurrent innovation of telomere machinery.
端粒确保染色体长度的内稳态和防止灾难性的端到端染色体融合。所有真核生物都需要这种必需的、严格保守的依赖端粒的基因组保护。然而,最近对哺乳动物、植物和苍蝇的进化分析报告称,端粒蛋白普遍快速进化。这种矛盾观察的原因——未保守的机制是基本的、保守的功能的基础——仍然是神秘的。事实上,这些快速进化的端粒蛋白结合、延伸和保护端粒 DNA,而在大多数系统中端粒 DNA 本身进化缓慢。我们假设普遍快速进化的亚端粒——端粒附近的重复序列——是“端粒悖论”的主要驱动因素。在这个模型中,亚端粒中的激进序列变化会干扰亚端粒依赖的端粒功能。受损的端粒功能会促使端粒蛋白适应,以维持端粒长度的内稳态和保护。我们提出了一个实验框架,利用蛋白质的差异和亚端粒序列的差异来检验这样一个假设,即亚端粒序列的进化塑造了端粒机制的反复创新。