Suppr超能文献

端粒悖论:快速进化的蛋白质与稳定的基因组保护。

The Telomere Paradox: Stable Genome Preservation with Rapidly Evolving Proteins.

机构信息

Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.

Department of Biology, University of Pennsylvania, Philadelphia, PA, USA; Epigenetics Institute, University of Pennsylvania, Philadelphia, PA, USA.

出版信息

Trends Genet. 2020 Apr;36(4):232-242. doi: 10.1016/j.tig.2020.01.007. Epub 2020 Feb 12.

Abstract

Telomeres ensure chromosome length homeostasis and protection from catastrophic end-to-end chromosome fusions. All eukaryotes require this essential, strictly conserved telomere-dependent genome preservation. However, recent evolutionary analyses of mammals, plants, and flies report pervasive rapid evolution of telomere proteins. The causes of this paradoxical observation - that unconserved machinery underlies an essential, conserved function - remain enigmatic. Indeed, these fast-evolving telomere proteins bind, extend, and protect telomeric DNA, which itself evolves slowly in most systems. We hypothesize that the universally fast-evolving subtelomere - the telomere-adjacent, repetitive sequence - is a primary driver of the 'telomere paradox'. Under this model, radical sequence changes in the subtelomere perturb subtelomere-dependent, telomere functions. Compromised telomere function then spurs adaptation of telomere proteins to maintain telomere length homeostasis and protection. We propose an experimental framework that leverages both protein divergence and subtelomeric sequence divergence to test the hypothesis that subtelomere sequence evolution shapes recurrent innovation of telomere machinery.

摘要

端粒确保染色体长度的内稳态和防止灾难性的端到端染色体融合。所有真核生物都需要这种必需的、严格保守的依赖端粒的基因组保护。然而,最近对哺乳动物、植物和苍蝇的进化分析报告称,端粒蛋白普遍快速进化。这种矛盾观察的原因——未保守的机制是基本的、保守的功能的基础——仍然是神秘的。事实上,这些快速进化的端粒蛋白结合、延伸和保护端粒 DNA,而在大多数系统中端粒 DNA 本身进化缓慢。我们假设普遍快速进化的亚端粒——端粒附近的重复序列——是“端粒悖论”的主要驱动因素。在这个模型中,亚端粒中的激进序列变化会干扰亚端粒依赖的端粒功能。受损的端粒功能会促使端粒蛋白适应,以维持端粒长度的内稳态和保护。我们提出了一个实验框架,利用蛋白质的差异和亚端粒序列的差异来检验这样一个假设,即亚端粒序列的进化塑造了端粒机制的反复创新。

相似文献

3
Telomeres in evolution and evolution of telomeres.端粒在进化过程中以及端粒的进化
Chromosome Res. 2005;13(5):469-79. doi: 10.1007/s10577-005-0997-2.
4
Telomere dynamics in mammals.哺乳动物中的端粒动态变化
Genome Dyn. 2012;7:29-45. doi: 10.1159/000337128. Epub 2012 Jun 25.
10
Swi1Timeless Prevents Repeat Instability at Fission Yeast Telomeres.Swi1Timeless可防止裂殖酵母端粒处的重复序列不稳定。
PLoS Genet. 2016 Mar 18;12(3):e1005943. doi: 10.1371/journal.pgen.1005943. eCollection 2016 Mar.

引用本文的文献

8
No end in sight: Mysteries of the telomeric variation in plants.暂无定论:植物端粒变异之谜。
Am J Bot. 2023 Nov;110(11):e16244. doi: 10.1002/ajb2.16244. Epub 2023 Nov 1.

本文引用的文献

1
Diversification and collapse of a telomere elongation mechanism.端粒延伸机制的多样化和崩溃。
Genome Res. 2019 Jun;29(6):920-931. doi: 10.1101/gr.245001.118. Epub 2019 May 28.
4
Characterizing the Major Structural Variant Alleles of the Human Genome.人类基因组主要结构变异等位基因的特征。
Cell. 2019 Jan 24;176(3):663-675.e19. doi: 10.1016/j.cell.2018.12.019. Epub 2019 Jan 17.
6
Heterochromatin: Guardian of the Genome.异染色质:基因组的守护者。
Annu Rev Cell Dev Biol. 2018 Oct 6;34:265-288. doi: 10.1146/annurev-cellbio-100617-062653. Epub 2018 Jul 25.
10
High-throughput single-molecule telomere characterization.高通量单细胞端粒特征分析。
Genome Res. 2017 Nov;27(11):1904-1915. doi: 10.1101/gr.222422.117. Epub 2017 Oct 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验