NMRGroup, Faculty of Natural Sciences II, Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, Betty-Heimann-Str. 7, Saale, 06120, Halle, Germany.
J Biomol NMR. 2013 Nov;57(3):219-35. doi: 10.1007/s10858-013-9782-2. Epub 2013 Sep 19.
A comprehensive analysis of the dynamics of the SH3 domain of chicken alpha-spectrin is presented, based upon (15)N T1 and on- and off-resonance T1ρ relaxation times obtained on deuterated samples with a partial back-exchange of labile protons under a variety of the experimental conditions, taking explicitly into account the dipolar order parameters calculated from (15)N-(1)H dipole-dipole couplings. It is demonstrated that such a multi-frequency approach enables access to motional correlation times spanning about 6 orders of magnitude. We asses the validity of different motional models based upon orientation autocorrelation functions with a different number of motional components. We find that for many residues a "two components" model is not sufficient for a good description of the data and more complicated fitting models must be considered. We show that slow motions with correlation times on the order of 1-10 μs can be determined reliably in spite of rather low apparent amplitudes (below 1 %), and demonstrate that the distribution of the protein backbone mobility along the time scale axis is pronouncedly non-uniform and non-monotonic: two domains of fast (τ < 10(-10) s) and intermediate (10(-9) s < τ < 10(-7) s) motions are separated by a gap of one order of magnitude in time with almost no motions. For slower motions (τ > 10(-6) s) we observe a sharp ~1 order of magnitude decrease of the apparent motional amplitudes. Such a distribution obviously reflects different nature of backbone motions on different time scales, where the slow end may be attributed to weakly populated "excited states." Surprisingly, our data reveal no clearly evident correlations between secondary structure of the protein and motional parameters. We also could not notice any unambiguous correlations between motions in different time scales along the protein backbone emphasizing the importance of the inter-residue interactions and the cooperative nature of protein dynamics.
本文全面分析了鸡α- spectrin SH3 结构域的动力学特性。研究基于氘代样品在多种实验条件下的(15)N T1 和(15)N 和 off-resonance T1ρ 弛豫时间,同时还考虑了基于(15)N-(1)H 偶极-偶极耦合计算得到的偶极排列参数。实验结果表明,这种多频方法可以获得大约 6 个数量级的运动相关时间。我们基于不同数量运动成分的方位角相关函数评估了不同运动模型的有效性。结果表明,对于许多残基,“两成分”模型不足以很好地描述数据,需要考虑更复杂的拟合模型。我们发现,尽管表观幅度(低于 1%)较低,仍能可靠地确定具有 1-10 μs 相关时间的慢运动,并且证明蛋白质骨架在时间尺度轴上的移动分布明显不均匀且非单调:快(τ < 10(-10) s)和中等(10(-9) s < τ < 10(-7) s)运动的两个区域被一个数量级的时间间隔隔开,几乎没有运动。对于较慢的运动(τ > 10(-6) s),我们观察到表观运动幅度急剧下降约 1 个数量级。这种分布显然反映了不同时间尺度上骨架运动的不同性质,其中缓慢的末端可能归因于人口较少的“激发态”。令人惊讶的是,我们的数据没有显示出蛋白质二级结构与运动参数之间存在明显的相关性。我们也没有注意到蛋白质骨架上不同时间尺度之间运动的任何明确相关性,这强调了残基间相互作用和蛋白质动力学的协同性质的重要性。