Suppr超能文献

动态生物学模型中用于参数估计的参数相关性识别。

Identification of parameter correlations for parameter estimation in dynamic biological models.

作者信息

Li Pu, Vu Quoc Dong

机构信息

Department of Simulation and Optimal Processes, Institute of Automation and Systems Engineering, Ilmenau University of Technology, P, O, Box 100565, 98684 Ilmenau, Germany.

出版信息

BMC Syst Biol. 2013 Sep 22;7:91. doi: 10.1186/1752-0509-7-91.

Abstract

BACKGROUND

One of the challenging tasks in systems biology is parameter estimation in nonlinear dynamic models. A biological model usually contains a large number of correlated parameters leading to non-identifiability problems. Although many approaches have been developed to address both structural and practical non-identifiability problems, very few studies have been made to systematically investigate parameter correlations.

RESULTS

In this study we present an approach that is able to identify both pairwise parameter correlations and higher order interrelationships among parameters in nonlinear dynamic models. Correlations are interpreted as surfaces in the subspaces of correlated parameters. Based on the correlation information obtained in this way both structural and practical non-identifiability can be clarified. Moreover, it can be concluded from the correlation analysis that a minimum number of data sets with different inputs for experimental design are needed to relieve the parameter correlations, which corresponds to the maximum number of correlated parameters among the correlation groups.

CONCLUSIONS

The information of pairwise and higher order interrelationships among parameters in biological models gives a deeper insight into the cause of non-identifiability problems. The result of our correlation analysis provides a necessary condition for experimental design in order to acquire suitable measurement data for unique parameter estimation.

摘要

背景

系统生物学中的一项具有挑战性的任务是在非线性动力学模型中进行参数估计。生物模型通常包含大量相关参数,从而导致不可识别性问题。尽管已经开发了许多方法来解决结构和实际的不可识别性问题,但很少有研究系统地研究参数相关性。

结果

在本研究中,我们提出了一种能够识别非线性动力学模型中参数之间的成对参数相关性和高阶相互关系的方法。相关性被解释为相关参数子空间中的曲面。基于以这种方式获得的相关信息,结构和实际的不可识别性都可以得到阐明。此外,从相关性分析可以得出结论,为了减轻参数相关性,实验设计需要最少数量的具有不同输入的数据集,这对应于相关组中相关参数的最大数量。

结论

生物模型中参数之间的成对和高阶相互关系信息能更深入地洞察不可识别性问题的原因。我们的相关性分析结果为实验设计提供了必要条件,以便获取用于唯一参数估计的合适测量数据。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1eee/4015753/83c8afe2c5ac/1752-0509-7-91-1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验