Suppr超能文献

基于群体模型和贝叶斯推理的田间喂养研究推断对蜜蜂的农药毒性。

Inferring pesticide toxicity to honey bees from a field-based feeding study using a colony model and Bayesian inference.

机构信息

Office of Research and Development, Center for Public Health and Environmental Assessment, U.S. Environmental Protection Agency, 109 TW Alexander Drive, Durham, North Carolina, 27709, USA.

Crystal River Consulting LLC, 1909 Stonecastle Drive, Keller, Texas, 76262, USA.

出版信息

Ecol Appl. 2021 Dec;31(8):e02442. doi: 10.1002/eap.2442. Epub 2021 Sep 5.

Abstract

Honey bees are crucial pollinators for agricultural crops but are threatened by a multitude of stressors including exposure to pesticides. Linking our understanding of how pesticides affect individual bees to colony-level responses is challenging because colonies show emergent properties based on complex internal processes and interactions among individual bees. Agent-based models that simulate honey bee colony dynamics may be a tool for scaling between individual and colony effects of a pesticide. The U.S. Environmental Protection Agency (USEPA) and U.S. Department of Agriculture (USDA) are developing the VarroaPop + Pesticide model, which simulates the dynamics of honey bee colonies and how they respond to multiple stressors, including weather, Varroa mites, and pesticides. To evaluate this model, we used Approximate Bayesian Computation to fit field data from an empirical study where honey bee colonies were fed the insecticide clothianidin. This allowed us to reproduce colony feeding study data by simulating colony demography and mortality from ingestion of contaminated food. We found that VarroaPop + Pesticide was able to fit general trends in colony population size and structure and reproduce colony declines from increasing clothianidin exposure. The model underestimated adverse effects at low exposure (36 µg/kg), however, and overestimated recovery at the highest exposure level (140 µg/kg), for the adult and pupa endpoints, suggesting that mechanisms besides oral toxicity-induced mortality may have played a role in colony declines. The VarroaPop + Pesticide model estimates an adult oral LD of 18.9 ng/bee (95% CI 10.1-32.6) based on the simulated feeding study data, which falls just above the 95% confidence intervals of values observed in laboratory toxicology studies on individual bees. Overall, our results demonstrate a novel method for analyzing colony-level data on pesticide effects on bees and making inferences on pesticide toxicity to individual bees.

摘要

蜜蜂是农业作物的重要传粉媒介,但它们受到多种压力源的威胁,包括接触杀虫剂。将我们对杀虫剂如何影响个体蜜蜂的理解与群体水平的反应联系起来具有挑战性,因为群体表现出基于复杂内部过程和个体蜜蜂之间相互作用的新兴特性。基于代理的模型可以模拟蜜蜂群体动态,从而在个体和群体对杀虫剂的影响之间进行扩展。美国环境保护署(USEPA)和美国农业部(USDA)正在开发 VarroaPop + 农药模型,该模型模拟了蜜蜂群体的动态及其对多种压力源的反应,包括天气、瓦螨和杀虫剂。为了评估该模型,我们使用近似贝叶斯计算来拟合实地数据,这些数据来自一项关于给蜜蜂喂食杀虫剂噻虫胺的实证研究。这使我们能够通过模拟因摄入受污染食物而导致的群体死亡和死亡率来再现群体喂养研究数据。我们发现,VarroaPop + 农药模型能够拟合群体种群规模和结构的总体趋势,并再现因接触增加的噻虫胺而导致的群体下降。然而,对于成虫和蛹终点,该模型低估了低暴露(36μg/kg)的不利影响,高估了最高暴露水平(140μg/kg)的恢复,这表明除了口服毒性诱导的死亡率之外,其他机制可能在群体下降中发挥了作用。基于模拟喂养研究数据,VarroaPop + 农药模型估计成虫口服 LD 为 18.9ng/只(95%置信区间 10.1-32.6),略高于实验室毒理学研究中观察到的个体蜜蜂值的 95%置信区间。总的来说,我们的结果展示了一种分析蜜蜂群体对杀虫剂影响的新方法,并对个体蜜蜂的杀虫剂毒性做出了推断。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1dd0/9539499/c41ecd438132/EAP-31-e02442-g005.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验