文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

电子束辐照对镁掺杂羟基磷灰石/壳聚糖复合涂层的形态和物理化学性质的影响

The Effects of Electron Beam Irradiation on the Morphological and Physicochemical Properties of Magnesium-Doped Hydroxyapatite/Chitosan Composite Coatings.

作者信息

Bita Bogdan, Stancu Elena, Stroe Daniela, Dumitrache Mirabela, Ciobanu Steluta Carmen, Iconaru Simona Liliana, Predoi Daniela, Groza Andreea

机构信息

National Institute for Laser, Plasma and Radiation Physics, 409 Atomistilor Street, Magurele, 077125 Bucharest, Romania.

Radiotherapy Department, Coltea Clinical Hospital, Ion C. Bratianu 1 Street, 030171 Bucharest, Romania.

出版信息

Polymers (Basel). 2022 Jan 31;14(3):582. doi: 10.3390/polym14030582.


DOI:10.3390/polym14030582
PMID:35160570
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC8839261/
Abstract

This work reports on the influence of 5 MeV electron beam radiations on the morphological features and chemical structure of magnesium-doped hydroxyapatite/chitosan composite coatings generated by the magnetron sputtering technique. The exposure to ionizing radiation in a linear electron accelerator dedicated to medical use has been performed in a controllable manner by delivering up to 50 Gy radiation dose in fractions of 2 Gy radiation dose per 40 s. After the irradiation with electron beams, the surface of layers became nano-size structured. The partial detachment of irradiated layers from the substrates has been revealed only after visualizing their cross sections by scanning electron microscopy. The energy dispersive X-ray spectral analysis of layer cross-sections indicated that the distribution of chemical elements in the samples depends on the radiation dose. The X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy and X-ray diffraction analysis have shown that the physicochemical processes induced by the ionizing radiation in the magnesium doped hydroxyapatite/chitosan composite coatings do not alter the apatite structure, and Mg remains bonded with the phosphate groups.

摘要

这项工作报道了5兆电子伏电子束辐射对通过磁控溅射技术制备的镁掺杂羟基磷灰石/壳聚糖复合涂层的形态特征和化学结构的影响。在专门用于医疗用途的线性电子加速器中,通过以每40秒2戈瑞辐射剂量的分次方式提供高达50戈瑞的辐射剂量,以可控方式进行电离辐射暴露。在用电子束辐照后,涂层表面变成纳米尺寸结构。仅在通过扫描电子显微镜观察其横截面后,才发现辐照层与基底部分分离。层横截面的能量色散X射线光谱分析表明,样品中化学元素的分布取决于辐射剂量。X射线光电子能谱、傅里叶变换红外光谱和X射线衍射分析表明,电离辐射在镁掺杂羟基磷灰石/壳聚糖复合涂层中引发的物理化学过程不会改变磷灰石结构,并且镁仍与磷酸基团结合。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/d9a85ecee345/polymers-14-00582-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/7cd7481c5a8d/polymers-14-00582-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/4d2b8f6b8f86/polymers-14-00582-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/dc760cae3278/polymers-14-00582-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/ef71395c4e95/polymers-14-00582-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/ea852609f00e/polymers-14-00582-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/cd3d3986cf11/polymers-14-00582-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/035b0673faf2/polymers-14-00582-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/9e24bcfa3c7b/polymers-14-00582-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/d9a85ecee345/polymers-14-00582-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/7cd7481c5a8d/polymers-14-00582-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/4d2b8f6b8f86/polymers-14-00582-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/dc760cae3278/polymers-14-00582-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/ef71395c4e95/polymers-14-00582-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/ea852609f00e/polymers-14-00582-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/cd3d3986cf11/polymers-14-00582-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/035b0673faf2/polymers-14-00582-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/9e24bcfa3c7b/polymers-14-00582-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/33cb/8839261/d9a85ecee345/polymers-14-00582-g009.jpg

相似文献

[1]
The Effects of Electron Beam Irradiation on the Morphological and Physicochemical Properties of Magnesium-Doped Hydroxyapatite/Chitosan Composite Coatings.

Polymers (Basel). 2022-1-31

[2]
Chitosan-Hydroxyapatite Composite Layers Generated in Radio Frequency Magnetron Sputtering Discharge: From Plasma to Structural and Morphological Analysis of Layers.

Polymers (Basel). 2020-12-21

[3]
Impact of Gamma Irradiation on the Properties of Magnesium-Doped Hydroxyapatite in Chitosan Matrix.

Materials (Basel). 2022-8-4

[4]
Biocomposite Coatings Doped with Magnesium and Zinc Ions in Chitosan Matrix for Antimicrobial Applications.

Materials (Basel). 2023-6-15

[5]
Spectral Analysis of Strontium-Doped Calcium Phosphate/Chitosan Composite Films.

Polymers (Basel). 2023-10-28

[6]
Biological and Physicochemical Analysis of Sr-Doped Hydroxyapatite/Chitosan Composite Layers.

Polymers (Basel). 2024-7-5

[7]
Calcium Phosphates-Chitosan Composite Layers Obtained by Combining Radio-Frequency Magnetron Sputtering and Matrix-Assisted Pulsed Laser Evaporation Techniques.

Polymers (Basel). 2022-12-1

[8]
Biological and Physico-Chemical Properties of Composite Layers Based on Magnesium-Doped Hydroxyapatite in Chitosan Matrix.

Micromachines (Basel). 2022-9-22

[9]
Novel Dextran Coated Cerium Doped Hydroxyapatite Thin Films.

Polymers (Basel). 2022-4-29

[10]
Novel silicon-doped hydroxyapatite (Si-HA) for biomedical coatings: an in vitro study using acellular simulated body fluid.

J Biomed Mater Res B Appl Biomater. 2006-2

引用本文的文献

[1]
Influence of Electron Beam Irradiation and RPMI Immersion on the Development of Magnesium-Doped Hydroxyapatite/Chitosan Composite Bioactive Layers for Biomedical Applications.

Polymers (Basel). 2025-2-18

[2]
Advancements in nanohydroxyapatite: synthesis, biomedical applications and composite developments.

Regen Biomater. 2024-11-5

[3]
Electrosprayed Stearic-Acid-Coated Ethylcellulose Microparticles for an Improved Sustained Release of Anticancer Drug.

Gels. 2023-8-29

[4]
Selenium- and/or copper-substituted hydroxyapatite: A bioceramic substrate for biomedical applications.

J Biomater Appl. 2023-9

[5]
Synthesis of Chitosan-Silver Nanocomposite and Its Evaluation as an Antibacterial Coating for Mobile Phone Glass Protectors.

ACS Omega. 2023-5-10

[6]
Biological and Physico-Chemical Properties of Composite Layers Based on Magnesium-Doped Hydroxyapatite in Chitosan Matrix.

Micromachines (Basel). 2022-9-22

[7]
Impact of Gamma Irradiation on the Properties of Magnesium-Doped Hydroxyapatite in Chitosan Matrix.

Materials (Basel). 2022-8-4

[8]
Improving the Mechanical Resistance of Hydroxyapatite/Chitosan Composite Materials Made of Nanofibers with Crystalline Preferential Orientation.

Materials (Basel). 2022-7-5

本文引用的文献

[1]
Fabrication and applications of bioactive chitosan-based organic-inorganic hybrid materials: A review.

Carbohydr Polym. 2021-9-1

[2]
Chitosan-Hydroxyapatite Composite Layers Generated in Radio Frequency Magnetron Sputtering Discharge: From Plasma to Structural and Morphological Analysis of Layers.

Polymers (Basel). 2020-12-21

[3]
Synthesis, Characterization, and Antimicrobial Activity of Magnesium-Doped Hydroxyapatite Suspensions.

Nanomaterials (Basel). 2019-9-11

[4]
Ionizing radiation and bone quality: time-dependent effects.

Radiat Oncol. 2019-1-22

[5]
Radiation sterilization of tissue allografts: A review.

World J Radiol. 2016-4-28

[6]
Effects of ionizing radiation on proteins in lyophilized or frozen demineralized human bone.

Rev Bras Ortop. 2016-2-23

[7]
Biological response of cancer cells to radiation treatment.

Front Mol Biosci. 2014-11-17

[8]
Growth of crystalline hydroxyapatite thin films at room temperature by tuning the energy of the RF-magnetron sputtering plasma.

ACS Appl Mater Interfaces. 2013-9-23

[9]
In-vitro bioactivity, biocorrosion and antibacterial activity of silicon integrated hydroxyapatite/chitosan composite coating on 316 L stainless steel implants.

Mater Sci Eng C Mater Biol Appl. 2013-5-31

[10]
Chitosan-hydroxyapatite composites.

Carbohydr Polym. 2012-6-20

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索