Ikerbasque, Basque Foundation for Science, 48011 Bilbao, Spain.
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16610-5. doi: 10.1073/pnas.1316071110. Epub 2013 Sep 23.
Short-term synaptic plasticity strongly affects the neural dynamics of cortical networks. The Tsodyks and Markram (TM) model for short-term synaptic plasticity accurately accounts for a wide range of physiological responses at different types of cortical synapses. Here, we report a route to chaotic behavior via a Shilnikov homoclinic bifurcation that dynamically organizes some of the responses in the TM model. In particular, the presence of such a homoclinic bifurcation strongly affects the shape of the trajectories in the phase space and induces highly irregular transient dynamics; indeed, in the vicinity of the Shilnikov homoclinic bifurcation, the number of population spikes and their precise timing are unpredictable and highly sensitive to the initial conditions. Such an irregular deterministic dynamics has its counterpart in stochastic/network versions of the TM model: The existence of the Shilnikov homoclinic bifurcation generates complex and irregular spiking patterns and--acting as a sort of springboard--facilitates transitions between the down-state and unstable periodic orbits. The interplay between the (deterministic) homoclinic bifurcation and stochastic effects may give rise to some of the complex dynamics observed in neural systems.
短期突触可塑性强烈影响皮质网络的神经动力学。Tsodyks 和 Markram(TM)的短期突触可塑性模型准确地解释了不同类型皮质突触的广泛生理反应。在这里,我们通过 Shilnikov 同宿分岔报告了一条通向混沌行为的途径,该分岔动态地组织了 TM 模型中的一些反应。特别是,这种同宿分岔的存在强烈地影响了相空间中轨迹的形状,并诱导了高度不规则的瞬态动力学;事实上,在 Shilnikov 同宿分岔附近,种群尖峰的数量及其精确的时间是不可预测的,并且对初始条件非常敏感。这种不规则的确定性动力学在 TM 模型的随机/网络版本中有其对应物:Shilnikov 同宿分岔的存在产生了复杂和不规则的尖峰模式,并作为一种跳板,促进了下状态和不稳定周期轨道之间的转变。(确定性)同宿分岔和随机效应之间的相互作用可能导致神经系统中观察到的一些复杂动态。