Suppr超能文献

基于蛋白质组学的生物标志物发现和验证研究中生物样本队列大小的统计设计。

Statistical design for biospecimen cohort size in proteomics-based biomarker discovery and verification studies.

机构信息

Biostatistics Center, Massachusetts General Hospital Cancer Center , Boston, Massachusetts 02114, United States.

出版信息

J Proteome Res. 2013 Dec 6;12(12):5383-94. doi: 10.1021/pr400132j. Epub 2013 Oct 28.

Abstract

Protein biomarkers are needed to deepen our understanding of cancer biology and to improve our ability to diagnose, monitor, and treat cancers. Important analytical and clinical hurdles must be overcome to allow the most promising protein biomarker candidates to advance into clinical validation studies. Although contemporary proteomics technologies support the measurement of large numbers of proteins in individual clinical specimens, sample throughput remains comparatively low. This problem is amplified in typical clinical proteomics research studies, which routinely suffer from a lack of proper experimental design, resulting in analysis of too few biospecimens to achieve adequate statistical power at each stage of a biomarker pipeline. To address this critical shortcoming, a joint workshop was held by the National Cancer Institute (NCI), National Heart, Lung, and Blood Institute (NHLBI), and American Association for Clinical Chemistry (AACC) with participation from the U.S. Food and Drug Administration (FDA). An important output from the workshop was a statistical framework for the design of biomarker discovery and verification studies. Herein, we describe the use of quantitative clinical judgments to set statistical criteria for clinical relevance and the development of an approach to calculate biospecimen sample size for proteomic studies in discovery and verification stages prior to clinical validation stage. This represents a first step toward building a consensus on quantitative criteria for statistical design of proteomics biomarker discovery and verification research.

摘要

蛋白质生物标志物对于深入了解癌症生物学以及提高癌症的诊断、监测和治疗能力至关重要。为了让最有前途的蛋白质生物标志物候选物能够进入临床验证研究,必须克服重要的分析和临床障碍。尽管当代蛋白质组学技术支持对单个临床标本中大量蛋白质进行测量,但样本通量仍然相对较低。在典型的临床蛋白质组学研究中,这个问题更加突出,这些研究通常缺乏适当的实验设计,导致在生物标志物管道的每个阶段分析的生物样本太少,无法达到足够的统计效力。为了解决这一关键缺陷,美国国立癌症研究所(NCI)、美国国立心肺血液研究所(NHLBI)和美国临床化学协会(AACC)与美国食品和药物管理局(FDA)联合举办了一次研讨会。研讨会的一个重要成果是制定了用于设计生物标志物发现和验证研究的统计框架。本文描述了使用定量临床判断来为临床相关性设定统计标准的方法,以及在临床验证阶段之前的发现和验证阶段计算蛋白质组学研究生物样本量的方法。这是就蛋白质组学生物标志物发现和验证研究的统计设计建立定量标准达成共识的第一步。

相似文献

1
Statistical design for biospecimen cohort size in proteomics-based biomarker discovery and verification studies.
J Proteome Res. 2013 Dec 6;12(12):5383-94. doi: 10.1021/pr400132j. Epub 2013 Oct 28.
3
Proteomic Approaches for Biomarker Panels in Cancer.
J Immunoassay Immunochem. 2016;37(1):1-15. doi: 10.1080/15321819.2015.1116009.
5
Feature Selection Methods for Protein Biomarker Discovery from Proteomics or Multiomics Data.
Mol Cell Proteomics. 2021;20:100083. doi: 10.1016/j.mcpro.2021.100083. Epub 2021 Apr 20.
6
7
Development of biomarkers of genitourinary cancer using mass spectrometry-based clinical proteomics.
J Food Drug Anal. 2019 Apr;27(2):387-403. doi: 10.1016/j.jfda.2018.09.005. Epub 2018 Oct 27.
8
Computational biomarker pipeline from discovery to clinical implementation: plasma proteomic biomarkers for cardiac transplantation.
PLoS Comput Biol. 2013 Apr;9(4):e1002963. doi: 10.1371/journal.pcbi.1002963. Epub 2013 Apr 4.
9
Mass spectrometry-based proteomics: from cancer biology to protein biomarkers, drug targets, and clinical applications.
Am Soc Clin Oncol Educ Book. 2014:e504-10. doi: 10.14694/EdBook_AM.2014.34.e504.

引用本文的文献

3
Serum proteomics of adults with acute liver failure provides mechanistic insights and attractive prognostic biomarkers.
JHEP Rep. 2025 Jan 30;7(5):101338. doi: 10.1016/j.jhepr.2025.101338. eCollection 2025 May.
4
Novel proteomics-based plasma test for early detection of multiple cancers in the general population.
BMJ Oncol. 2024 Jan 9;3(1):e000073. doi: 10.1136/bmjonc-2023-000073. eCollection 2024.
5
Multi-omic signatures of host response associated with presence, type, and outcome of enterococcal bacteremia.
mSystems. 2025 Feb 18;10(2):e0147124. doi: 10.1128/msystems.01471-24. Epub 2025 Jan 21.
8
Deep and unbiased proteomics, pathway enrichment analysis, and protein-protein interaction of biomarker signatures in migraine.
Ther Adv Chronic Dis. 2024 Sep 18;15:20406223241274302. doi: 10.1177/20406223241274302. eCollection 2024.
9
Evaluation of Serum Proteome Sample Preparation Methods to Support Clinical Proteomics Applications.
J Am Soc Mass Spectrom. 2024 Nov 6;35(11):2659-2669. doi: 10.1021/jasms.4c00131. Epub 2024 Sep 12.
10
Blood-Based Proteomics for Adult-Onset Focal Dystonias.
Ann Neurol. 2024 Jul;96(1):110-120. doi: 10.1002/ana.26929. Epub 2024 Apr 5.

本文引用的文献

1
Biomarker discovery for heterogeneous diseases.
Cancer Epidemiol Biomarkers Prev. 2013 May;22(5):747-55. doi: 10.1158/1055-9965.EPI-12-1236. Epub 2013 Mar 5.
3
Differential diagnosis of a pelvic mass: improved algorithms and novel biomarkers.
Int J Gynecol Cancer. 2012 May;22 Suppl 1(Suppl 1):S5-8. doi: 10.1097/IGC.0b013e318251c97d.
6
Breaking the bottleneck in the protein biomarker pipeline.
Clin Chem. 2012 Feb;58(2):321-3. doi: 10.1373/clinchem.2011.175034. Epub 2011 Dec 2.
7
Sample size tables for computer-aided detection studies.
AJR Am J Roentgenol. 2011 Nov;197(5):W821-8. doi: 10.2214/AJR.11.6764.
9
A targeted proteomics-based pipeline for verification of biomarkers in plasma.
Nat Biotechnol. 2011 Jun 19;29(7):625-34. doi: 10.1038/nbt.1900.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验