Suppr超能文献

通过水通道蛋白的沙漏形状优化水通透性。

Optimizing water permeability through the hourglass shape of aquaporins.

机构信息

Institut Lumière Matière, Unité Mixte de Recherche 5306, Université Lyon 1-Centre National de la Recherche Scientifique, Université de Lyon, 69622 Villeurbanne, France.

出版信息

Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16367-72. doi: 10.1073/pnas.1306447110. Epub 2013 Sep 25.

Abstract

The ubiquitous aquaporin channels are able to conduct water across cell membranes, combining the seemingly antagonist functions of a very high selectivity with a remarkable permeability. Whereas molecular details are obvious keys to perform these tasks, the overall efficiency of transport in such nanopores is also strongly limited by viscous dissipation arising at the connection between the nanoconstriction and the nearby bulk reservoirs. In this contribution, we focus on these so-called entrance effects and specifically examine whether the characteristic hourglass shape of aquaporins may arise from a geometrical optimum for such hydrodynamic dissipation. Using a combination of finite-element calculations and analytical modeling, we show that conical entrances with suitable opening angle can indeed provide a large increase of the overall channel permeability. Moreover, the optimal opening angles that maximize the permeability are found to compare well with the angles measured in a large variety of aquaporins. This suggests that the hourglass shape of aquaporins could be the result of a natural selection process toward optimal hydrodynamic transport. Finally, in a biomimetic perspective, these results provide guidelines to design artificial nanopores with optimal performances.

摘要

无处不在的水通道蛋白能够在细胞膜间传导水,将高选择性和惊人的渗透性这两种看似矛盾的功能结合在一起。尽管分子细节显然是实现这些功能的关键,但在这种纳米孔中,整体传输效率也受到纳米收缩处与附近体相储库之间的连接处粘性耗散的强烈限制。在本研究中,我们重点关注这些所谓的入口效应,并特别研究水通道蛋白的沙漏形状是否可能源于这种流体动力耗散的几何最优。我们使用有限元计算和分析模型的组合,表明具有合适开口角度的锥形入口确实可以大大提高通道的整体渗透性。此外,发现能够使渗透性最大化的最佳开口角度与在各种水通道蛋白中测量到的角度非常吻合。这表明水通道蛋白的沙漏形状可能是朝向最佳流体动力学传输的自然选择过程的结果。最后,从仿生学的角度来看,这些结果为设计具有最佳性能的人工纳米孔提供了指导。

相似文献

1
Optimizing water permeability through the hourglass shape of aquaporins.通过水通道蛋白的沙漏形状优化水通透性。
Proc Natl Acad Sci U S A. 2013 Oct 8;110(41):16367-72. doi: 10.1073/pnas.1306447110. Epub 2013 Sep 25.
2
[Optimal permeability of aquaporins: a question of shape?].[水通道蛋白的最佳通透性:形状问题?]
Med Sci (Paris). 2015 Feb;31(2):174-9. doi: 10.1051/medsci/20153102014. Epub 2015 Mar 4.
6
Exploring fast water permeation through aquaporin-mimicking membranes.探索通过水通道蛋白模拟膜的快速水渗透。
Phys Chem Chem Phys. 2020 Jan 21;22(3):1333-1348. doi: 10.1039/c9cp05496k. Epub 2019 Dec 19.
7
Molecular dynamics study of the archaeal aquaporin AqpM.古菌水通道蛋白 AqpM 的分子动力学研究。
BMC Genomics. 2011 Dec 22;12 Suppl 4(Suppl 4):S8. doi: 10.1186/1471-2164-12-S4-S8.
8
Collective diffusion model for water permeation through microscopic channels.水通过微观通道渗透的集体扩散模型。
Phys Rev Lett. 2004 Nov 26;93(22):224501. doi: 10.1103/PhysRevLett.93.224501. Epub 2004 Nov 24.

引用本文的文献

2
8
Mechanosensitive aquaporins.机械敏感水通道蛋白
Biophys Rev. 2023 Jul 17;15(4):497-513. doi: 10.1007/s12551-023-01098-x. eCollection 2023 Aug.

本文引用的文献

2
Barriers to superfast water transport in carbon nanotube membranes.碳纳米管膜中超快速水传输的障碍。
Nano Lett. 2013 May 8;13(5):1910-4. doi: 10.1021/nl304000k. Epub 2013 Apr 12.
6
Water transport in human aquaporin-4: molecular dynamics (MD) simulations.水在人水通道蛋白-4中的转运:分子动力学(MD)模拟。
Biochem Biophys Res Commun. 2011 Sep 9;412(4):654-9. doi: 10.1016/j.bbrc.2011.08.019. Epub 2011 Aug 12.
8
The shear viscosity of rigid water models.刚性水分子模型的剪切黏度。
J Chem Phys. 2010 Mar 7;132(9):096101. doi: 10.1063/1.3330544.
9
Nanofluidics, from bulk to interfaces.从体相到界面的纳流控学。
Chem Soc Rev. 2010 Mar;39(3):1073-95. doi: 10.1039/b909366b. Epub 2009 Dec 1.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验