Department of Physics and Astronomy and LaserLaB Amsterdam, VU University Amsterdam, De Boelelaan 1081, 1081 HV, Amsterdam, The Netherlands.
Chem Soc Rev. 2014 Feb 21;43(4):1144-55. doi: 10.1039/c3cs60292c.
Förster Resonance Energy Transfer (FRET) is the phenomenon of non-radiative transfer of electronic excitations from a donor fluorophore to an acceptor, mediated by electronic dipole-dipole coupling. The transfer rate and, as a consequence, efficiency depend non-linearly on the distance between the donor and the acceptor. FRET efficiency can thus be used as an effective and accurate reporter of distance between two fluorophores and changes thereof. Over the last 50 years or so, FRET has been used as a spectroscopic ruler to measure conformations and conformational changes of biomolecules. More recently, FRET has been combined with microscopy, ultimately allowing measurement of FRET between a single donor and a single acceptor pair. In this review, we will explain the physical foundations of FRET and how FRET can be applied to biomolecules. We will highlight the power of the different FRET approaches by focusing on its application to the motor protein kinesin, which undergoes several conformational changes driven by enzymatic action, that ultimately result in unidirectional motion along microtubule filaments, driving active transport in the cell. Single-molecule and ensemble FRET studies of different aspects of kinesin have provided numerous insights into the complex chemomechanical mechanism of this fascinating protein.
Förster 共振能量转移(FRET)是一种非辐射电子激发从供体荧光团转移到受体的现象,由电子偶极-偶极耦合介导。转移速率,因此,效率与供体和受体之间的距离呈非线性关系。因此,FRET 效率可以用作两个荧光团之间距离及其变化的有效且准确的报告器。在过去的 50 年左右的时间里,FRET 一直被用作光谱学标尺来测量生物分子的构象和构象变化。最近,FRET 已与显微镜结合使用,最终允许测量单个供体和单个受体对之间的 FRET。在这篇综述中,我们将解释 FRET 的物理基础以及如何将 FRET 应用于生物分子。我们将通过关注其在动力蛋白 kinesin 上的应用来突出不同 FRET 方法的强大功能,该蛋白经历了几个由酶驱动的构象变化,最终导致沿微管丝的单向运动,从而在细胞中驱动主动运输。不同方面的 kinesin 的单分子和整体 FRET 研究为这种迷人的蛋白质的复杂化学机械机制提供了许多见解。