Rockville, Md.; Fairfax, Va.; and Milan, Italy From private practice.
Plast Reconstr Surg. 2013 Oct;132(4 Suppl 2):5S-21S. doi: 10.1097/PRS.0b013e31829d1d40.
The purpose of this study was to present new rheologic data for hyaluronic acid filler products, correlate them with recent tissue integration studies, and provide a scientific rationale for selecting appropriate products for volume replacement within different tissue levels and anatomical zones. A brief overview of the methodology of filler rheology studies and data analysis is provided.
Six U.S. Food and Drug Administration–approved, cross-linked, nonanimal-derived hyaluronic acid filler products and one hyaluronic acid product approved in Europe and elsewhere were studied: one cohesive polydensifiedmatrix hyaluronic acid (Belotero Balance, also known as Belotero Basic), two Hylacross hyaluronicacids (Juvéderm Ultra and Juvéderm Ultra Plus), one Vycross hyaluronic acid (Juvéderm Voluma), and three nonanimal stabilized hyaluronic acids (Perlane, Restylane and Restylane SubQ) [corrected].The elastic modulus, complex viscosity, and viscous modulus of each filler gel were quantified. Tan delta for each filler gel and also for calcium hydroxylapatite filler (Radiesse) was calculated at 0.7 Hz.
Cohesive polydensified matrix hyaluronic acid (Belotero Balance) has the lowest elasticity and viscosity and the highest tan delta. This predicts its soft, flowing qualities and correlates with its homogeneous pattern of tissue integration after intradermal implantation. Nonanimal stabilized hyaluronic acid (Perlane and Restylane) has the highest elasticity and viscosity and low tan delta. This predicts its firm, less flowing qualities and correlates with a bolus-like pattern of tissue integration. Hylacross hyaluronic acid (Juvéderm) has intermediate elasticity, viscosity, and tan delta, correlating with its intermediate pattern of tissue integration.
Rheologic evaluation reliably predicts tissue integration patterns and appropriate clinical applications of the studied fillers. Paradigms of layered filler placement can be designed to optimally address individual patient need.
本研究旨在呈现新型透明质酸填充剂产品的流变学数据,将其与近期的组织整合研究相关联,并为在不同组织层次和解剖区域选择合适的产品进行容量替代提供科学依据。本文简要概述了填充剂流变学研究和数据分析的方法。
本研究对六种获得美国食品和药物管理局批准的、交联的、非动物源性的透明质酸填充剂产品和一种在欧洲和其他地区获得批准的透明质酸产品进行了研究:一种黏弹聚合型透明质酸(贝洛特罗平衡,也称贝洛特罗基础)、两种 Hylacross 透明质酸(Juvéderm Ultra 和 Juvéderm Ultra Plus)、一种 Vycross 透明质酸(Juvéderm Voluma)和三种非动物稳定透明质酸(Perlane、Restylane 和 Restylane SubQ)[已更正]。本研究对每种填充剂凝胶的弹性模量、复合黏度和黏性模量进行了量化。计算了每种填充剂凝胶以及钙羟磷灰石填充剂(Radiesse)在 0.7 Hz 时的损耗角正切值(tan delta)。
黏弹聚合型透明质酸(贝洛特罗平衡)的弹性和黏度最低,tan delta 值最高。这预示着其具有柔软、流动的特性,并与皮内植入后的均匀组织整合模式相关。非动物稳定透明质酸(Perlane 和 Restylane)的弹性和黏度最高,tan delta 值最低。这预示着其具有坚实、流动性差的特性,并与块状组织整合模式相关。Hylacross 透明质酸(Juvéderm)的弹性、黏度和 tan delta 值居中,与中等程度的组织整合模式相关。
流变学评估可可靠地预测研究中填充剂的组织整合模式及其临床应用。分层填充剂放置的范例可以设计为满足个体患者的需求。