Suppr超能文献

半胱氨酸(C)-X-C 趋化因子受体 4 在前列腺癌细胞氧化应激过程中调控烟酰胺腺嘌呤二核苷酸磷酸氧化酶 2

Cysteine (C)-X-C Receptor 4 Regulates NADPH Oxidase-2 During Oxidative Stress in Prostate Cancer Cells.

作者信息

Jones Kia J, Chetram Mahandranauth A, Bethea Danaya A, Bryant Latoya K, Odero-Marah Valerie, Hinton Cimona V

机构信息

Center for Cancer Research and Therapeutic Development, Clark Atlanta University, 223 James P. Brawley Dr. S.W., Atlanta, GA, 30314, USA.

出版信息

Cancer Microenviron. 2013 Sep 28;6(3):277-88. doi: 10.1007/s12307-013-0136-0.

Abstract

Reactive oxygen species (ROS) are implicated in many human diseases, including cancer. We have previously demonstrated that ROS increased the expression and activity of the chemokine receptor, CXCR4, which enhanced metastatic functions in prostate cancer cells. Studies have also revealed that CXCR4 and its ligand, SDF-1α, promoted ROS accumulation; however the source of ROS was not investigated. Recent evidence suggested that ROS accumulation in prostate cancer cell lines was contributed by the NADPH oxidase (NOX) family of enzymes. Herein, we sought to determine whether the CXCR4/SDF-1α signaling axis mediates ROS production through NOX in prostate cancer. We observed an increase in intracellular ROS generation in prostate cancer cells upon SDF-1α stimulation compared to untreated samples. Conversely, lower levels of ROS were detected in cells treated with AMD3100 (CXCR4 antagonist) or the ROS scavenger, N-acetyl-cysteine (NAC). Markedly reduced levels of ROS were observed in cells treated with apocynin (NOX inhibitor) compared to rotenone (mitochondrial complex I inhibitor)-treated cells. Specifically, we determined that NOX2 responded to, and was regulated by, the SDF-1α/CXCR4 signaling axis. Moreover, chemical inhibition of the ERK1/2 and PI3K pathways revealed that PI3K/AKT signaling participated in CXCR4-mediated NOX activity, and that these collective signaling events resulted in enhanced cell movement towards a chemoattractant. Finally, NOX2 may be a potential therapeutic target, as Oncomine microarray database analysis of normal prostate, benign prostatic hyperplasia (BPH) and prostatic intraepithelial neoplasia (PIN) tissue samples determined a correlation between NOX2 expression and prostate cancer. Taken together, these results suggest that CXCR4/SDF-1α-mediated ROS production through NOX2 enzymes may be an emerging concept by which chemokine signaling progresses tumorigenesis.

摘要

活性氧(ROS)与包括癌症在内的许多人类疾病有关。我们之前已经证明,ROS会增加趋化因子受体CXCR4的表达和活性,从而增强前列腺癌细胞的转移功能。研究还表明,CXCR4及其配体SDF-1α会促进ROS积累;然而,ROS的来源并未得到研究。最近的证据表明,前列腺癌细胞系中的ROS积累是由烟酰胺腺嘌呤二核苷酸磷酸(NADPH)氧化酶(NOX)家族的酶所致。在此,我们试图确定CXCR4/SDF-1α信号轴是否通过NOX介导前列腺癌中的ROS产生。与未处理的样本相比,我们观察到SDF-1α刺激后前列腺癌细胞内ROS生成增加。相反,在用AMD3100(CXCR4拮抗剂)或ROS清除剂N-乙酰半胱氨酸(NAC)处理的细胞中检测到较低水平的ROS。与用鱼藤酮(线粒体复合物I抑制剂)处理的细胞相比,在用夹竹桃麻素(NOX抑制剂)处理的细胞中观察到ROS水平显著降低。具体而言,我们确定NOX2对SDF-1α/CXCR4信号轴有反应并受其调节。此外,对ERK1/2和PI3K途径的化学抑制表明,PI3K/AKT信号传导参与了CXCR4介导的NOX活性,并且这些共同的信号事件导致细胞向趋化因子的运动增强。最后,NOX2可能是一个潜在的治疗靶点,因为对正常前列腺、良性前列腺增生(BPH)和前列腺上皮内瘤变(PIN)组织样本的Oncomine微阵列数据库分析确定了NOX2表达与前列腺癌之间的相关性。综上所述,这些结果表明,CXCR4/SDF-1α通过NOX2酶介导的ROS产生可能是趋化因子信号促进肿瘤发生的一个新出现的概念。

相似文献

1
Cysteine (C)-X-C Receptor 4 Regulates NADPH Oxidase-2 During Oxidative Stress in Prostate Cancer Cells.
Cancer Microenviron. 2013 Sep 28;6(3):277-88. doi: 10.1007/s12307-013-0136-0.
8
Stromal cell-derived factor-1/CXCR4 promotes IL-6 production in human synovial fibroblasts.
J Cell Biochem. 2011 Apr;112(4):1219-27. doi: 10.1002/jcb.23043.
10
NADPH oxidase-generated reactive oxygen species are required for stromal cell-derived factor-1α-stimulated angiogenesis.
Arterioscler Thromb Vasc Biol. 2014 Sep;34(9):2023-32. doi: 10.1161/ATVBAHA.114.303733. Epub 2014 Jul 2.

引用本文的文献

3
Serum deprivation initiates adaptation and survival to oxidative stress in prostate cancer cells.
Sci Rep. 2020 Jul 27;10(1):12505. doi: 10.1038/s41598-020-68668-x.
4
Inhibition of NADPH oxidase 2 induces apoptosis in osteosarcoma: The role of reactive oxygen species in cell proliferation.
Oncol Lett. 2018 May;15(5):7955-7962. doi: 10.3892/ol.2018.8291. Epub 2018 Mar 19.
5
Oxidative stress and prostatic diseases.
Mol Clin Oncol. 2017 Nov;7(5):723-728. doi: 10.3892/mco.2017.1413. Epub 2017 Sep 19.
6
Oxidative stress in prostate hyperplasia and carcinogenesis.
J Exp Clin Cancer Res. 2016 Sep 8;35(1):139. doi: 10.1186/s13046-016-0418-8.
7
A NOX2/Egr-1/Fyn pathway delineates new targets for TKI-resistant malignancies.
Oncotarget. 2015 Sep 15;6(27):23631-46. doi: 10.18632/oncotarget.4604.
8
The redox biology network in cancer pathophysiology and therapeutics.
Redox Biol. 2015 Aug;5:347-357. doi: 10.1016/j.redox.2015.06.014. Epub 2015 Jun 25.
9
Relationship between expression of NADPH oxidase 2 and invasion and prognosis of human gastric cancer.
World J Gastroenterol. 2015 May 28;21(20):6271-9. doi: 10.3748/wjg.v21.i20.6271.
10
Depolarization Controls TRAIL-Sensitization and Tumor-Selective Killing of Cancer Cells: Crosstalk with ROS.
Front Oncol. 2014 May 30;4:128. doi: 10.3389/fonc.2014.00128. eCollection 2014.

本文引用的文献

1
ROS-mediated regulation of CXCR4 in cancer.
Front Biol (Beijing). 2013 Jun 1;8(3). doi: 10.1007/s11515-012-1204-4.
2
Reactive oxygen species in cancer biology and anticancer therapy.
Curr Med Chem. 2013;20(30):3677-92. doi: 10.2174/0929867311320999165.
3
Redox-regulated growth factor survival signaling.
Antioxid Redox Signal. 2013 Nov 20;19(15):1815-27. doi: 10.1089/ars.2012.5028. Epub 2013 Jan 15.
4
NADPH Oxidases NOXs and DUOXs as putative targets for cancer therapy.
Anticancer Agents Med Chem. 2013 Mar;13(3):502-14.
5
Aiding and abetting roles of NOX oxidases in cellular transformation.
Nat Rev Cancer. 2012 Sep;12(9):627-37. doi: 10.1038/nrc3339.
6
Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling.
Cell Signal. 2012 May;24(5):981-90. doi: 10.1016/j.cellsig.2012.01.008. Epub 2012 Jan 20.
7
The Nox family of NADPH oxidases: friend or foe of the vascular system?
Curr Hypertens Rep. 2012 Feb;14(1):70-8. doi: 10.1007/s11906-011-0238-3.
9
ROS enhances CXCR4-mediated functions through inactivation of PTEN in prostate cancer cells.
Biochem Biophys Res Commun. 2011 Jul 1;410(2):195-200. doi: 10.1016/j.bbrc.2011.05.074. Epub 2011 May 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验