Suppr超能文献

大鼠海马体中未排序尖峰的贝叶斯解码。

Bayesian decoding using unsorted spikes in the rat hippocampus.

机构信息

Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts;

出版信息

J Neurophysiol. 2014 Jan;111(1):217-27. doi: 10.1152/jn.01046.2012. Epub 2013 Oct 2.

Abstract

A fundamental task in neuroscience is to understand how neural ensembles represent information. Population decoding is a useful tool to extract information from neuronal populations based on the ensemble spiking activity. We propose a novel Bayesian decoding paradigm to decode unsorted spikes in the rat hippocampus. Our approach uses a direct mapping between spike waveform features and covariates of interest and avoids accumulation of spike sorting errors. Our decoding paradigm is nonparametric, encoding model-free for representing stimuli, and extracts information from all available spikes and their waveform features. We apply the proposed Bayesian decoding algorithm to a position reconstruction task for freely behaving rats based on tetrode recordings of rat hippocampal neuronal activity. Our detailed decoding analyses demonstrate that our approach is efficient and better utilizes the available information in the nonsortable hash than the standard sorting-based decoding algorithm. Our approach can be adapted to an online encoding/decoding framework for applications that require real-time decoding, such as brain-machine interfaces.

摘要

神经科学的一个基本任务是了解神经集合如何表示信息。群体解码是一种从神经元群体中提取信息的有用工具,它基于集合的尖峰活动。我们提出了一种新的贝叶斯解码范例,用于解码大鼠海马体中的未分类尖峰。我们的方法在尖峰波形特征和感兴趣的协变量之间使用直接映射,并避免了尖峰分类错误的积累。我们的解码范例是非参数的,为表示刺激而无需编码模型,并从所有可用的尖峰及其波形特征中提取信息。我们基于大鼠海马神经元活动的四极管记录,将所提出的贝叶斯解码算法应用于自由行为大鼠的位置重建任务。我们详细的解码分析表明,我们的方法是有效的,并且比基于标准排序的解码算法更好地利用了不可分类散列中的可用信息。我们的方法可以适应在线编码/解码框架,适用于需要实时解码的应用,例如脑机接口。

相似文献

1
Bayesian decoding using unsorted spikes in the rat hippocampus.大鼠海马体中未排序尖峰的贝叶斯解码。
J Neurophysiol. 2014 Jan;111(1):217-27. doi: 10.1152/jn.01046.2012. Epub 2013 Oct 2.
6
Calibrating Bayesian Decoders of Neural Spiking Activity.校准神经尖峰活动的贝叶斯解码器。
J Neurosci. 2024 May 1;44(18):e2158232024. doi: 10.1523/JNEUROSCI.2158-23.2024.
7
Sums of Spike Waveform Features for Motor Decoding.用于运动解码的尖峰波形特征总和
Front Neurosci. 2017 Jul 18;11:406. doi: 10.3389/fnins.2017.00406. eCollection 2017.

引用本文的文献

本文引用的文献

5
Control of a brain-computer interface without spike sorting.无需尖峰分类的脑机接口控制
J Neural Eng. 2009 Oct;6(5):055004. doi: 10.1088/1741-2560/6/5/055004. Epub 2009 Sep 1.
6
Hippocampal replay of extended experience.扩展体验的海马体重演。
Neuron. 2009 Aug 27;63(4):497-507. doi: 10.1016/j.neuron.2009.07.027.
7
Automatic spike sorting using tuning information.利用调谐信息进行自动尖峰分类
Neural Comput. 2009 Sep;21(9):2466-501. doi: 10.1162/neco.2009.12-07-669.
10
Traditional waveform based spike sorting yields biased rate code estimates.基于传统波形的尖峰分类会产生有偏差的速率编码估计。
Proc Natl Acad Sci U S A. 2009 Apr 28;106(17):6921-6. doi: 10.1073/pnas.0901771106. Epub 2009 Apr 16.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验