Suppr超能文献

用于药物相互作用预测的自适应多核图神经网络

Adaptive Multi-Kernel Graph Neural Network for Drug-Drug Interaction Prediction.

作者信息

Zhao Linqian, Shang Junliang, Meng Xianghan, He Xin, Zhang Yuanyuan, Liu Jin-Xing

机构信息

School of Computer Science, Qufu Normal University, Rizhao, 276826, China.

School of Information and Control Engineering, Qingdao University of Technology, Qingdao, 266520, China.

出版信息

Interdiscip Sci. 2025 Jan 28. doi: 10.1007/s12539-024-00684-1.

Abstract

Combination therapy, which synergistically enhances treatment efficacy and inhibits disease progression through the combined effects of multiple drugs, has emerged as a mainstream approach for treating complex diseases and alleviating symptoms. However, drug-drug interactions (DDIs) can sometimes lead to adverse reactions, potentially endangering lives. Therefore, developing efficient and accurate DDI prediction methods is crucial for elucidating drug mechanisms and preventing side effects. Current prediction methods often focus solely on the presence of interactions between drugs when constructing DDI graphs, neglecting the specific types of DDIs. This oversight can result in a decline in predictive performance. To address this issue, we propose an Adaptive Multi-Kernel Graph Neural Network (AMKGNN) for DDI prediction. AMKGNN differentiates DDIs into increase-type and decrease-type interactions, constructing separate increased DDI and decreased DDI graphs as convolutional kernels. AMKGNN employs a graph kernel learning mechanism that adaptively determines the optimal threshold between high-frequency and low-frequency signals in the network to capture node embeddings. Initially, AMKGNN learns drug embedding representations based on these two graph convolutional kernels and various drug features. These representations are then concatenated and input into a deep neural network to predict potential DDIs. The results show that our model achieved AUC and AUPR values above 90% across three sub-tasks on two datasets, significantly outperforming the other five comparison models. Furthermore, ablation experiments and case studies validate the superiority of AMKGNN.

摘要

联合治疗通过多种药物的联合作用协同增强治疗效果并抑制疾病进展,已成为治疗复杂疾病和缓解症状的主流方法。然而,药物相互作用(DDIs)有时会导致不良反应,可能危及生命。因此,开发高效准确的DDI预测方法对于阐明药物作用机制和预防副作用至关重要。当前的预测方法在构建DDI图时往往只关注药物之间相互作用的存在,而忽略了DDIs的具体类型。这种疏忽可能导致预测性能下降。为了解决这个问题,我们提出了一种用于DDI预测的自适应多核图神经网络(AMKGNN)。AMKGNN将DDIs分为增加型和减少型相互作用,构建单独的增加型DDI图和减少型DDI图作为卷积核。AMKGNN采用图核学习机制,自适应地确定网络中高频和低频信号之间的最佳阈值以捕获节点嵌入。最初,AMKGNN基于这两个图卷积核和各种药物特征学习药物嵌入表示。然后将这些表示连接起来并输入到深度神经网络中以预测潜在的DDIs。结果表明,我们的模型在两个数据集的三个子任务上均实现了90%以上的AUC和AUPR值,显著优于其他五个比较模型。此外,消融实验和案例研究验证了AMKGNN的优越性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验