Institut de Génétique Moleculaire et Cellulaire, CNRS/INSERM/UdS, 1 rue Laurent Fries, BP10142, 67404 Illkirch, France.
Development. 2013 Nov;140(21):4426-34. doi: 10.1242/dev.096768. Epub 2013 Oct 2.
Pulsatile flow is a universal feature of the blood circulatory system in vertebrates and can lead to diseases when abnormal. In the embryo, blood flow forces stimulate vessel remodeling and stem cell proliferation. At these early stages, when vessels lack muscle cells, the heart is valveless and the Reynolds number (Re) is low, few details are available regarding the mechanisms controlling pulses propagation in the developing vascular network. Making use of the recent advances in optical-tweezing flow probing approaches, fast imaging and elastic-network viscous flow modeling, we investigated the blood-flow mechanics in the zebrafish main artery and show how it modifies the heart pumping input to the network. The movement of blood cells in the embryonic artery suggests that elasticity of the network is an essential factor mediating the flow. Based on these observations, we propose a model for embryonic blood flow where arteries act like a capacitor in a way that reduces heart effort. These results demonstrate that biomechanics is key in controlling early flow propagation and argue that intravascular elasticity has a role in determining embryonic vascular function.
脉动流是脊椎动物血液循环系统的普遍特征,当出现异常时可能导致疾病。在胚胎中,血流力刺激会促使血管重塑和干细胞增殖。在这些早期阶段,当血管缺乏平滑肌细胞时,心脏是无瓣膜的,雷诺数 (Re) 较低,关于控制发育中的血管网络中脉冲传播的机制的细节很少。利用光学钳流探测方法、快速成像和弹性网络粘性流建模的最新进展,我们研究了斑马鱼主动脉中的血流力学,并展示了它如何改变心脏向网络的泵送输入。胚胎动脉中血细胞的运动表明,网络的弹性是介导流动的一个重要因素。基于这些观察结果,我们提出了一个胚胎血流模型,其中动脉的作用类似于电容器,从而减少心脏的工作量。这些结果表明,生物力学在控制早期血流传播中起着关键作用,并表明血管内弹性在确定胚胎血管功能方面发挥作用。