Quality and Technology, Department of Food Science, Faculty of Science, University of Copenhagen, Rolighedsvej 30, Frederiksberg C, 1958, Copenhagen, Denmark,
Anal Bioanal Chem. 2013 Nov;405(28):9193-205. doi: 10.1007/s00216-013-7341-z. Epub 2013 Oct 4.
Reproducible and quantitative gas chromatography-mass spectrometry (GC-MS)-based metabolomics analysis of complex biological mixtures requires robust and broad-spectrum derivatization. We have evaluated derivatization of complex metabolite mixtures using trimethylsilyl cyanide (TMSCN) and the most commonly used silylation reagent N-methyl-N-(trimethylsilyl)trifluoroacetamide (MSTFA). For the comparative analysis, two metabolite mixtures, a standard complex mixture of 35 metabolites covering a range of amino acids, carbohydrates, small organic acids, phenolic acids, flavonoids and triterpenoids, and a phenolic extract of blueberry fruits were used. Four different derivatization methods, (1) direct silylation using TMSCN, (2) methoximation followed by TMSCN (M-TMSCN), (3) direct silylation using MSTFA, and (4) methoximation followed by MSTFA (M-MSTFA) were compared in terms of method sensitivity, repeatability, and derivatization reaction time. The derivatization methods were observed at 13 different derivatization times, 5 min to 60 h, for both metabolite mixtures. Fully automated sample derivatization and injection enabled excellent repeatability and precise method comparisons. At the optimal silylation times, peak intensities of 34 out of 35 metabolites of the standard mixture were up to five times higher using M-TMSCN compared with M-MSTFA. For direct silylation of the complex standard mixture, the TMSCN method was up to 54 times more sensitive than MSTFA. Similarly, all the metabolites detected from the blueberry extract showed up to 8.8 times higher intensities when derivatized using TMSCN than with MSTFA. Moreover, TMSCN-based silylation showed fewer artifact peaks, robust profiles, and higher reaction speed as compared with MSTFA. A method repeatability test revealed the following robustness of the four methods: TMSCN > M-TMSCN > M-MSTFA > MSTFA.
复杂生物混合物的重现性和定量气相色谱-质谱(GC-MS)-基于代谢组学分析需要强大且广谱的衍生化。我们已经评估了使用三甲基硅氰化物(TMSCN)和最常用的硅烷化试剂 N-甲基-N-(三甲基硅基)三氟乙酰胺(MSTFA)对复杂代谢物混合物进行衍生化。为了进行比较分析,使用了两种代谢物混合物,一种是涵盖氨基酸、碳水化合物、小分子有机酸、酚酸、类黄酮和三萜类化合物范围的 35 种代谢物的标准复杂混合物,另一种是蓝莓果实的酚类提取物。在直接使用 TMSCN 进行硅烷化的方法 (1)、甲氧基化后再用 TMSCN (M-TMSCN) 的方法 (2)、直接使用 MSTFA 进行硅烷化的方法 (3) 和甲氧基化后再用 MSTFA (M-MSTFA) 的方法 (4) 方面,比较了方法的灵敏度、重复性和衍生化反应时间。对两种代谢物混合物进行了 13 种不同衍生化时间的观察,时间范围为 5 分钟至 60 小时。完全自动化的样品衍生化和注入实现了出色的重复性和精确的方法比较。在最佳硅烷化时间下,与 M-MSTFA 相比,M-TMSCN 可将标准混合物 35 种代谢物中的 34 种的峰强度提高多达五倍。对于复杂标准混合物的直接硅烷化,TMSCN 方法的灵敏度比 MSTFA 高 54 倍。同样,当使用 TMSCN 衍生化时,蓝莓提取物中检测到的所有代谢物的强度都高达 MSTFA 的 8.8 倍。此外,与 MSTFA 相比,TMSCN 基硅烷化显示出更少的伪影峰、稳健的图谱和更高的反应速度。方法重复性测试显示了这四种方法的以下稳健性:TMSCN > M-TMSCN > M-MSTFA > MSTFA。