Cologne Biocenter, Institute for Genetics, University of Cologne, Zülpicher Straße 47a, 50674 Köln, Germany.
Evolution. 2013 Oct;67(10):2945-56. doi: 10.1111/evo.12155. Epub 2013 Jun 4.
Alteration of regulatory DNA elements or their binding proteins may have drastic consequences for morphological evolution. Chromatin insulators are one example of such proteins and play a fundamental role in organizing gene expression. While a single insulator protein, CTCF (CCCTC-binding factor), is known in vertebrates, Drosophila melanogaster utilizes six additional factors. We studied the evolution of these proteins and show here that-in contrast to the bilaterian-wide distribution of CTCF-all other D. melanogaster insulators are restricted to arthropods. The full set is present exclusively in the genus Drosophila whereas only two insulators, Su(Hw) and CTCF, existed at the base of the arthropod clade and all additional factors have been acquired successively at later stages. Secondary loss of factors in some lineages further led to the presence of different insulator subsets in arthropods. Thus, the evolution of insulator proteins within arthropods is an ongoing and dynamic process that reshapes and supplements the ancient CTCF-based system common to bilaterians. Expansion of insulator systems may therefore be a general strategy to increase an organism's gene regulatory repertoire and its potential for morphological plasticity.
调控 DNA 元件或其结合蛋白的改变可能会对形态进化产生巨大影响。染色质绝缘子就是这样的蛋白之一,它们在组织基因表达方面发挥着重要作用。脊椎动物中已知有一种绝缘子蛋白 CTCF(CCCTC 结合因子),而黑腹果蝇则利用了另外六种因子。我们研究了这些蛋白的进化,并在此表明,与在所有后生动物中广泛分布的 CTCF 不同,所有其他黑腹果蝇绝缘子都局限于节肢动物。完整的绝缘子蛋白集合仅存在于果蝇属中,而在节肢动物的分支基部仅存在两个绝缘子 Su(Hw)和 CTCF,所有其他的因子都是在后来的阶段逐渐获得的。在一些谱系中,这些因子的次级丢失进一步导致了节肢动物中存在不同的绝缘子亚集。因此,节肢动物内部绝缘子蛋白的进化是一个持续的动态过程,它重塑并补充了后生动物中常见的古老 CTCF 为基础的系统。扩展绝缘子系统可能因此是增加生物体基因调控谱及其形态可塑性潜力的一种通用策略。