The University of Queensland, Advanced Water Management Centre, Gehrmann Building, St. Lucia, Brisbane, QLD 4072, Australia.
Water Res. 2014 Jan 1;48:218-28. doi: 10.1016/j.watres.2013.09.034. Epub 2013 Sep 25.
During the production of high quality recycled water by reverse osmosis membrane filtration secondary effluent must be disinfected to limit biofouling on the membrane surface. Advanced Water Treatment Plants in South East Queensland, Australia use disinfectant contact times ranging from 30 min up to 24 h. Disinfectants such as chlorine and chloramines react with effluent organic matter to generate disinfection by-products (DBPs) which could be potentially hazardous to human health if the water is destined for supplementing public water supplies. In this context, secondary effluents are of concern because of their high total organic carbon content which can act as DBP precursors. Also, effluent organic matter may form different DBPs to those formed from natural organic matter during conventional drinking water treatment, either in quantity, identity or simply in the abundance of different DBPs relative to each other. It cannot be assumed per se with certainty that DBP formation will be affected in the same way by operational changes as in drinking water production. Response surface modelling has been employed in this study at the bench scale to investigate the effect of reaction time (0-24 h), pH (5.5-8.5), temperature (23-35 °C), disinfection strategy (chlorine vs chloramines used prior to membrane treatment) and the interaction between these different parameters on DBP formation during disinfection of secondary effluent. The concentration of halogenated DBPs formed during the first 24 h of reaction with the different disinfectants followed the order chlorination >> in line-formed monochloramine > pre-formed monochloramine. Contact time with chlorine was the major influencing factor on DBP formation during chlorination, except for the bromine-containing trihalomethanes and dibromoacetonitrile for which pH was more significant. Chlorination at high pH led to an increased formation of chloral hydrate, trichloronitromethane, dibromoacetonitrile and the four trihalomethanes while the opposite effect was observed for the other targeted DBPs. Temperature was identified as the least influencing parameter compared to pH and reaction time for all DBPs in all the disinfection strategies, except for the formation of chloral hydrate where pH and temperature had a similar significance and bromoform that was similarly affected by temperature and reaction time. Chloramines employed at pH 8.5 reduced the concentration of all studied DBPs compared to pH 5.5. Furthermore, reaction time was the most significant factor for trichloronitromethane, chloroform, trichloroacetonitrile, dichloroacetonitrile and bromochloroacetonitrile formation while pH was the most influencing factor affecting the formation of the remaining DBPs.
在反渗透膜过滤生产高质量再生水的过程中,必须对二级出水进行消毒,以限制膜表面的生物污垢。澳大利亚东南部的高级水处理厂使用消毒剂接触时间从 30 分钟到 24 小时不等。氯和氯胺等消毒剂与废水有机物反应,生成消毒副产物 (DBPs),如果水用于补充公共供水,这些副产物可能对人体健康构成潜在危害。在这种情况下,由于二级出水的总有机碳含量高,可能成为 DBP 的前体,因此受到关注。此外,废水中的有机物可能会形成与传统饮用水处理过程中形成的天然有机物不同的 DBP,无论是在数量、身份上,还是在彼此之间不同 DBP 的丰度上。不能想当然地认为操作变化对饮用水生产中的 DBP 形成的影响方式相同。本研究采用台式响应面模型,研究了反应时间(0-24 小时)、pH 值(5.5-8.5)、温度(23-35°C)、消毒策略(膜处理前使用氯或氯胺)以及这些不同参数之间的相互作用对二级出水消毒过程中 DBP 形成的影响。在与不同消毒剂的 24 小时反应过程中形成的卤代 DBP 的浓度顺序为氯化作用>>线状形成的一氯胺>预形成的一氯胺。在氯化过程中,与氯的接触时间是影响 DBP 形成的主要因素,除了溴含量三卤甲烷和二溴乙腈,pH 值的影响更大。高 pH 值下氯化会导致氯乙醛、三氯硝基甲烷、二溴乙腈和四种三卤甲烷的生成增加,而对于其他目标 DBP 则观察到相反的效果。与 pH 值和反应时间相比,温度被确定为所有消毒策略中所有 DBP 的影响最小的参数,除了氯乙醛的形成,其中 pH 值和温度具有相似的重要性,而溴仿则受温度和反应时间的类似影响。在 pH 值为 8.5 时使用的氯胺与 pH 值为 5.5 时相比,降低了所有研究 DBP 的浓度。此外,对于三氯硝基甲烷、氯仿、三氯乙腈、二氯乙腈和溴氯乙腈的形成,反应时间是最重要的因素,而 pH 值是影响其余 DBP 形成的最重要因素。