Xu Ming, Li Xiao-Xue, Xiong Jing, Xia Min, Gulbins Erich, Zhang Yang, Li Pin-Lan
Department of Pharmacology and Toxicology, School of Medicine, Virginia Commonwealth University, Richmond, VA 23298, USA.
Department of Molecular Biology, University of Duisburg-Essen, Hufelandstrasse, 55, 45122 Essen, Germany.
Biochim Biophys Acta. 2013 Dec;1833(12):3228-3236. doi: 10.1016/j.bbamcr.2013.09.015. Epub 2013 Oct 1.
Autophagic flux is an important process during autophagy maturation in coronary arterial myocytes (CAMs). Here, we defined the role and molecular mechanism of the motor protein dynein in the regulation of autophagic flux in CAMs. In mouse CAMs, dynein protein is abundantly expressed. Pharmacological or genetic inhibition of dynein activity dramatically enhanced 7-ketocholesterol (7-Ket)-induced expression of the autophagic marker LC3B and increased the cellular levels of p62, a selective substrate for autophagy. Inhibition of dynein activity increased 7-Ket-induced formation of autophagosomes (APs), but reduced the number of autophagolysosomes (APLs) in CAMs. Furthermore, 7-Ket increased the fusion of APs with lysosomes and the velocity of APs movement in mouse CAMs, which was abolished when the dynein activity in these cells was inhibited. Interestingly, 7-Ket increased lysosomal Ca(2+) release and stimulated dynein ATPase activity, both of which were abolished by NAADP antagonists, NED-19 and PPADS. Taken together, our data suggest that NAADP-mediated Ca(2+) release plays a crucial role in regulating dynein activity, which mediates APs trafficking and fusion with lysosomes to form APLs thus regulating autophagic flux in CAMs under atherogenic stimulation.
自噬通量是冠状动脉心肌细胞(CAMs)自噬成熟过程中的一个重要过程。在此,我们确定了动力蛋白在调节CAMs自噬通量中的作用和分子机制。在小鼠CAMs中,动力蛋白大量表达。对动力蛋白活性的药理学或遗传学抑制显著增强了7-酮胆固醇(7-Ket)诱导的自噬标志物LC3B的表达,并增加了自噬选择性底物p62的细胞水平。抑制动力蛋白活性增加了7-Ket诱导的自噬体(APs)形成,但减少了CAMs中自噬溶酶体(APLs)的数量。此外,7-Ket增加了小鼠CAMs中APs与溶酶体的融合以及APs的移动速度,当这些细胞中的动力蛋白活性被抑制时,这种增加被消除。有趣的是,7-Ket增加了溶酶体Ca(2+)释放并刺激了动力蛋白ATP酶活性,而这两者都被NAADP拮抗剂NED-19和PPADS消除。综上所述,我们的数据表明,NAADP介导的Ca(2+)释放对调节动力蛋白活性起着关键作用,动力蛋白介导APs运输并与溶酶体融合形成APLs,从而在致动脉粥样硬化刺激下调节CAMs中的自噬通量。