Suppr超能文献

构建质量测量误差曲面以提高基于液相色谱/质谱的代谢组学中自动注释。

Constructing a mass measurement error surface to improve automatic annotations in liquid chromatography/mass spectrometry based metabolomics.

机构信息

Fondazione Edmund Mach, IASMA Research and Innovation Centre, via E. Mach 1, 38010, San Michele all'Adige, Italy; Faculty of Agriculture of The Hebrew University of Jerusalem, Rehovot, 76100, Israel.

出版信息

Rapid Commun Mass Spectrom. 2013 Nov 15;27(21):2425-31. doi: 10.1002/rcm.6705.

Abstract

RATIONALE

Estimation of mass measurement accuracy is an elementary step in the application of mass spectroscopy (MS) data towards metabolite annotations and has been addressed several times in the past. However, the reproducibility of mass measurements over a diverse set of analytes and in variable operating conditions, which are common in high-throughput metabolomics studies, has, to the best of our knowledge, not been addressed so far.

METHODS

A method to automatically extract mass measurement errors from a large data set of measurements made on a quadrupole time-of-flight (QTOF) MS instrument has been developed. The size of the data processed in this study has enabled us to use a statistical data driven approach to build a model which reliably predicts the confidence interval of the absolute mass measurement error based on individual ion peak conditions in a fast, high-throughput manner.

RESULTS

We show that our model predictions are reproducible in external datasets generated in similar, but not identical conditions, and have demonstrated the advantage of our approach over the common practice of fixed mass measurement error limits.

CONCLUSIONS

Outlined is an approach which can promote a more rational use of MS technology by automatically evaluating the absolute mass measurement error based on the individual peak conditions. The immediate application of our method is integration in high-throughput peak annotation pipelines for database searches.

摘要

原理

质量测量精度的估计是将质谱 (MS) 数据应用于代谢物注释的基本步骤,过去已经多次提出。然而,在高通量代谢组学研究中常见的各种分析物和可变操作条件下,质量测量的可重复性,据我们所知,迄今为止尚未得到解决。

方法

已经开发了一种从四极杆飞行时间 (QTOF) MS 仪器上进行的大量测量数据中自动提取质量测量误差的方法。本研究中处理的数据量之大,使我们能够使用基于个体离子峰条件的统计数据驱动方法,快速、高通量地构建一个模型,该模型能够可靠地预测绝对质量测量误差的置信区间。

结果

我们表明,我们的模型预测在类似但不完全相同条件下生成的外部数据集是可重复的,并且已经证明了我们的方法优于常见的固定质量测量误差限制的实践。

结论

本文概述了一种方法,该方法可以通过根据单个峰条件自动评估绝对质量测量误差来促进更合理地使用 MS 技术。我们方法的直接应用是将其集成到用于数据库搜索的高通量峰注释管道中。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验