Suppr超能文献

双链 RNA 中的 pKa 移动高度依赖于最近邻和凸起位置。

pKa shifting in double-stranded RNA is highly dependent upon nearest neighbors and bulge positioning.

机构信息

Department of Chemistry and Center for RNA Molecular Biology, Pennsylvania State University , University Park, Pennsylvania 16802, United States.

出版信息

Biochemistry. 2013 Oct 22;52(42):7470-6. doi: 10.1021/bi400768q. Epub 2013 Oct 7.

Abstract

Shifting of pKa's in RNA is important for many biological processes; however, the driving forces responsible for shifting are not well understood. Herein, we determine how structural environments surrounding protonated bases affect pKa shifting in double-stranded RNA (dsRNA). Using (31)P NMR, we determined the pKa of the adenine in an A(+)·C base pair in various sequence and structural environments. We found a significant dependence of pKa on the base pairing strength of nearest neighbors and the location of a nearby bulge. Increasing nearest neighbor base pairing strength shifted the pKa of the adenine in an A(+)·C base pair higher by an additional 1.6 pKa units, from 6.5 to 8.1, which is well above neutrality. The addition of a bulge two base pairs away from a protonated A(+)·C base pair shifted the pKa by only ~0.5 units less than a perfectly base paired hairpin; however, positioning the bulge just one base pair away from the A(+)·C base pair prohibited formation of the protonated base pair as well as several flanking base pairs. Comparison of data collected at 25 °C and 100 mM KCl to biological temperature and Mg(2+) concentration revealed only slight pKa changes, suggesting that similar sequence contexts in biological systems have the potential to be protonated at biological pH. We present a general model to aid in the determination of the roles protonated bases may play in various dsRNA-mediated processes including ADAR editing, miRNA processing, programmed ribosomal frameshifting, and general acid-base catalysis in ribozymes.

摘要

在许多生物过程中,RNA 中质子化碱基的 pKa 移动很重要;然而,导致这种移动的驱动力还没有被很好地理解。在此,我们确定了围绕质子化碱基的结构环境如何影响双链 RNA (dsRNA)中 pKa 的移动。我们使用 (31)P NMR 确定了各种序列和结构环境中 A(+)·C 碱基对中腺嘌呤的 pKa。我们发现 pKa 与最近邻碱基配对强度和附近凸起的位置有很大的依赖性。最近邻碱基配对强度的增加使 A(+)·C 碱基对中腺嘌呤的 pKa 额外升高了 1.6 pKa 单位,从 6.5 升高到 8.1,这远高于中性。距离质子化 A(+)·C 碱基对两个碱基的凸起仅将 pKa 移动了约 0.5 个单位,低于完美碱基配对的发夹;然而,将凸起放置在距离 A(+)·C 碱基对仅一个碱基的位置会阻止质子化碱基对以及几个相邻碱基对的形成。在 25°C 和 100 mM KCl 下收集的数据与生物温度和 Mg(2+)浓度的比较仅显示出轻微的 pKa 变化,这表明生物系统中类似的序列环境有可能在生理 pH 下被质子化。我们提出了一个通用模型,以帮助确定质子化碱基在各种 dsRNA 介导的过程中可能发挥的作用,包括 ADAR 编辑、miRNA 加工、程序性核糖体移码和核酶中的一般酸碱催化。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验