Suppr超能文献

在吉姆萨染色薄血涂片上自动检测疟疾。

Automated detection of malaria in Giemsa-stained thin blood smears.

作者信息

Mushabe Mark C, Dendere Ronald, Douglas Tania S

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2013;2013:3698-701. doi: 10.1109/EMBC.2013.6610346.

Abstract

The current gold standard of malaria diagnosis is the manual, microscopy-based analysis of Giemsa-stained blood smears, which is a time-consuming process requiring skilled technicians. This paper presents an algorithm that identifies and counts red blood cells (RBCs) as well as stained parasites in order to perform a parasitaemia calculation. Morphological operations and histogram-based thresholding are used to extract the red blood cells. Boundary curvature calculations and Delaunay triangulation are used to split clumped red blood cells. The stained parasites are classified using a Bayesian classifier with their RGB pixel values as features. The results show 98.5% sensitivity and 97.2% specificity for detecting infected red blood cells.

摘要

疟疾诊断的当前金标准是基于显微镜的手动分析吉姆萨染色血涂片,这是一个耗时的过程,需要技术熟练的技术人员。本文提出了一种算法,该算法可识别和计数红细胞(RBC)以及染色的寄生虫,以便进行寄生虫血症计算。形态学操作和基于直方图的阈值处理用于提取红细胞。边界曲率计算和德劳内三角剖分用于分离聚集的红细胞。使用贝叶斯分类器将染色的寄生虫分类,其RGB像素值作为特征。结果显示检测受感染红细胞的灵敏度为98.5%,特异性为97.2%。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验