Department of Mathematics and Computer Science, University of Cagliari, 09124 Cagliari, Italy.
Biomedical Imaging Group, École Polytechnique Fédérale de Lausanne (EPFL), 1015 Lausanne, Switzerland.
Sensors (Basel). 2018 Feb 8;18(2):513. doi: 10.3390/s18020513.
Malaria is an epidemic health disease and a rapid, accurate diagnosis is necessary for proper intervention. Generally, pathologists visually examine blood stained slides for malaria diagnosis. Nevertheless, this kind of visual inspection is subjective, error-prone and time-consuming. In order to overcome the issues, numerous methods of automatic malaria diagnosis have been proposed so far. In particular, many researchers have used mathematical morphology as a powerful tool for computer aided malaria detection and classification. Mathematical morphology is not only a theory for the analysis of spatial structures, but also a very powerful technique widely used for image processing purposes and employed successfully in biomedical image analysis, especially in preprocessing and segmentation tasks. Microscopic image analysis and particularly malaria detection and classification can greatly benefit from the use of morphological operators. The aim of this paper is to present a review of recent mathematical morphology based methods for malaria parasite detection and identification in stained blood smears images.
疟疾是一种流行的健康疾病,需要快速、准确的诊断才能进行适当的干预。通常,病理学家通过目视检查血涂片来诊断疟疾。然而,这种目视检查是主观的、容易出错的,并且耗时。为了克服这些问题,迄今为止已经提出了许多自动疟疾诊断方法。特别是,许多研究人员已经将数学形态学作为计算机辅助疟疾检测和分类的有力工具。数学形态学不仅是一种用于分析空间结构的理论,而且是一种非常强大的图像处理技术,广泛用于生物医学图像处理,并成功应用于预处理和分割任务。显微镜图像分析,特别是疟疾的检测和分类,可以从形态学算子的使用中受益匪浅。本文的目的是对基于数学形态学的近期方法进行综述,这些方法用于在染色血涂片图像中检测和识别疟原虫。