文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

从表达数据推断肿瘤纯度以及基质和免疫细胞的混合物。

Inferring tumour purity and stromal and immune cell admixture from expression data.

机构信息

1] Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Centre, Houston, Texas 77030, USA [2] Department of Obstetrics and Gynecology, Niigata University Graduate School of Medical and Dental Sciences, Niigata 951-8510, Japan.

出版信息

Nat Commun. 2013;4:2612. doi: 10.1038/ncomms3612.


DOI:10.1038/ncomms3612
PMID:24113773
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3826632/
Abstract

Infiltrating stromal and immune cells form the major fraction of normal cells in tumour tissue and not only perturb the tumour signal in molecular studies but also have an important role in cancer biology. Here we describe 'Estimation of STromal and Immune cells in MAlignant Tumours using Expression data' (ESTIMATE)--a method that uses gene expression signatures to infer the fraction of stromal and immune cells in tumour samples. ESTIMATE scores correlate with DNA copy number-based tumour purity across samples from 11 different tumour types, profiled on Agilent, Affymetrix platforms or based on RNA sequencing and available through The Cancer Genome Atlas. The prediction accuracy is further corroborated using 3,809 transcriptional profiles available elsewhere in the public domain. The ESTIMATE method allows consideration of tumour-associated normal cells in genomic and transcriptomic studies. An R-library is available on https://sourceforge.net/projects/estimateproject/.

摘要

浸润性基质和免疫细胞构成肿瘤组织中正常细胞的主要部分,它们不仅在分子研究中扰乱肿瘤信号,而且在癌症生物学中具有重要作用。在这里,我们描述了“使用表达数据估计恶性肿瘤中的基质和免疫细胞”(ESTIMATE)——一种使用基因表达特征推断肿瘤样本中基质和免疫细胞分数的方法。ESTIMATE 评分与来自 11 种不同肿瘤类型的样本的基于 DNA 拷贝数的肿瘤纯度相关,这些样本在安捷伦、Affymetrix 平台上进行了分析,或者基于 RNA 测序,并可通过癌症基因组图谱获得。通过使用其他公共领域提供的 3809 个转录谱进一步证实了预测的准确性。ESTIMATE 方法允许在基因组和转录组研究中考虑与肿瘤相关的正常细胞。一个 R 库可在 https://sourceforge.net/projects/estimateproject/ 上获得。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/c5885a90edd3/ncomms3612-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/69dd834abadb/ncomms3612-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/5aedf9a899c7/ncomms3612-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/b645c1598101/ncomms3612-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/530d57b8e0d2/ncomms3612-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/c2630ecee546/ncomms3612-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/c5885a90edd3/ncomms3612-f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/69dd834abadb/ncomms3612-f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/5aedf9a899c7/ncomms3612-f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/b645c1598101/ncomms3612-f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/530d57b8e0d2/ncomms3612-f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/c2630ecee546/ncomms3612-f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/d51b/3826632/c5885a90edd3/ncomms3612-f6.jpg

相似文献

[1]
Inferring tumour purity and stromal and immune cell admixture from expression data.

Nat Commun. 2013

[2]
Inferring copy number and genotype in tumour exome data.

BMC Genomics. 2014-8-28

[3]
A radiomics approach to assess tumour-infiltrating CD8 cells and response to anti-PD-1 or anti-PD-L1 immunotherapy: an imaging biomarker, retrospective multicohort study.

Lancet Oncol. 2018-8-14

[4]
The murine Microenvironment Cell Population counter method to estimate abundance of tissue-infiltrating immune and stromal cell populations in murine samples using gene expression.

Genome Med. 2020-10-6

[5]
A reference profile-free deconvolution method to infer cancer cell-intrinsic subtypes and tumor-type-specific stromal profiles.

Genome Med. 2020-2-28

[6]
Estimation of immune cell content in tumour tissue using single-cell RNA-seq data.

Nat Commun. 2017-12-11

[7]
AbsCN-seq: a statistical method to estimate tumor purity, ploidy and absolute copy numbers from next-generation sequencing data.

Bioinformatics. 2014-4-15

[8]
OncoSNP-SEQ: a statistical approach for the identification of somatic copy number alterations from next-generation sequencing of cancer genomes.

Bioinformatics. 2013-8-7

[9]
RF_Purify: a novel tool for comprehensive analysis of tumor-purity in methylation array data based on random forest regression.

BMC Bioinformatics. 2019-8-16

[10]
MixClone: a mixture model for inferring tumor subclonal populations.

BMC Genomics. 2015

引用本文的文献

[1]
Characterization of the extrinsic and intrinsic signatures and therapeutic vulnerability of small cell lung cancers.

Signal Transduct Target Ther. 2025-9-10

[2]
Development and validation of a machine learning model for predicting immune checkpoint inhibitor efficacy in advanced gastric cancer using dynamic changes in peripheral blood clinlabomics data: a retrospective multicenter cohort study.

Gastric Cancer. 2025-9-7

[3]
Construction and Validation of a Novel Prognostic Model Based on Cervical Cancer-Related Genes.

Reprod Sci. 2025-9-4

[4]
Spatial colocalization and molecular crosstalk of myofibroblastic CAFs and tumor cells shape lymph node metastasis in oral squamous cell carcinoma.

PLoS Genet. 2025-9-4

[5]
Nucleotide Metabolism and Immune Genes Can Predict the Prognostic Risk of Hepatocellular Carcinoma and the Immune Microenvironment.

Biology (Basel). 2025-8-18

[6]
Comprehensive pan-cancer analysis reveals ubiquitin-conjugating enzyme 2T as a potential biomarker for prognosis and cancer immunity.

Oncol Lett. 2025-8-20

[7]
Machine learning-based model identifies a novel cuproptosis-related mitochondrial gene signature with a key role in the prognosis and treatment of lung adenocarcinoma.

Oncol Lett. 2025-8-21

[8]
Identification of immune-related biomarkers associated with allergic rhinitis and development of a sample diagnostic model.

PLoS One. 2025-9-3

[9]
Regulation of m7G methylation in long COVID: Expression profiles and early predictive value of key genes.

Medicine (Baltimore). 2025-8-29

[10]
Spatial transcriptomics of retinoblastoma: a visual window on intra-patient heterogeneity.

BMC Cancer. 2025-9-2

本文引用的文献

[1]
Integrated genomic characterization of endometrial carcinoma.

Nature. 2013-5-2

[2]
Prognostically relevant gene signatures of high-grade serous ovarian carcinoma.

J Clin Invest. 2012-12-21

[3]
ArrayExpress update--trends in database growth and links to data analysis tools.

Nucleic Acids Res. 2012-11-27

[4]
Interobserver agreement among pathologists for semiquantitative hormone receptor scoring in breast carcinoma.

Am J Clin Pathol. 2012-12

[5]
Comprehensive molecular portraits of human breast tumours.

Nature. 2012-9-23

[6]
Mapping the hallmarks of lung adenocarcinoma with massively parallel sequencing.

Cell. 2012-9-14

[7]
Comprehensive genomic characterization of squamous cell lung cancers.

Nature. 2012-9-9

[8]
CTen: a web-based platform for identifying enriched cell types from heterogeneous microarray data.

BMC Genomics. 2012-9-6

[9]
Comprehensive molecular characterization of human colon and rectal cancer.

Nature. 2012-7-18

[10]
Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion.

Nature. 2012-7-26

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索