Pan Haitao, Zheng Qixin, Yang Shuhua, Guo Xiaodong, Wu Bin, Zou Zhenwei, Duan Zhixia
Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
J Biomed Mater Res A. 2014 Aug;102(8):2864-74. doi: 10.1002/jbm.a.34961. Epub 2013 Oct 16.
The osteogenic differentiation of bone marrow stromal cells (BMSCs) can be regulated by systemic or local growth factor, especially by transforming growth factor beta 1 (TGF-β1). However, how to maintain the bioactivity of exogenous TGF-β1 is a great challenge due to its short half-life time. The most promising solution is to transfer TGF-β1 gene into seed cells through transgenic technology and then transgenic cells to continuously secret endogenous TGF-β1 protein via gene expression. In this study, a novel non-viral vector (K)16GRGDSPC was chemically linked to bioactive bone matrices PLGA-[ASP-PEG]n using cross-linker to construct a novel non-viral gene transfer system. TGF-β1 gene was incubated with this system and subsequently rabbit-derived BMSCs were co-cultured with this gene-activated PLGA-[ASP-PEG]n, while co-cultured with PLGA-[ASP-PEG]n modified with (K)16GRGDSPC only and original PLGA-[ASP-PEG]n as control. Thus we fabricated three kinds of composites: Group A (BMSCs-TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); Group B (BMSCs-(K)16GRGDSPC-PLGA-[ASP-PEG]n composite); and Group C (BMSCs-PLGA-[ASP-PEG]n composite). TGF-β1 and other osteogenic phenotype markers of alkaline phosphatase, osteocalcin, osteopontin and type I collagen in Group A were all significantly higher than the other two groups ex vivo. In vivo, 15-mm long segmental rabbit bone defects were created and randomly implanted the aforementioned composites separately, and then fixed with plate-screws. The results demonstrated that the implants in Group A significantly accelerated bone regeneration compared with the other implants based on X-rays, histological and biomechanical examinations. Therefore, we conclude this novel peptide-modified and gene-activated biomimetic bone matrix of TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n is a very promising scaffold biomaterial for accelerating bone regeneration.
骨髓基质细胞(BMSCs)的成骨分化可受全身或局部生长因子调控,尤其是转化生长因子β1(TGF-β1)。然而,由于其半衰期短,如何维持外源性TGF-β1的生物活性是一个巨大挑战。最有前景的解决方案是通过转基因技术将TGF-β1基因导入种子细胞,然后转基因细胞通过基因表达持续分泌内源性TGF-β1蛋白。在本研究中,一种新型非病毒载体(K)16GRGDSPC通过交联剂与生物活性骨基质PLGA-[ASP-PEG]n化学连接,构建了一种新型非病毒基因传递系统。将TGF-β1基因与该系统孵育,随后将兔源BMSCs与这种基因激活的PLGA-[ASP-PEG]n共培养,同时与仅用(K)16GRGDSPC修饰的PLGA-[ASP-PEG]n和原始PLGA-[ASP-PEG]n作为对照共培养。由此我们制备了三种复合材料:A组(BMSCs-TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n复合材料);B组(BMSCs-(K)16GRGDSPC-PLGA-[ASP-PEG]n复合材料);C组(BMSCs-PLGA-[ASP-PEG]n复合材料)。体外实验中,A组中TGF-β1及其他成骨表型标志物碱性磷酸酶、骨钙素、骨桥蛋白和I型胶原均显著高于其他两组。体内实验中,制作15毫米长的兔节段性骨缺损,分别随机植入上述复合材料,然后用钢板螺钉固定。基于X射线、组织学和生物力学检查结果表明,与其他植入物相比,A组植入物显著加速了骨再生。因此,我们得出结论,这种新型的肽修饰和基因激活的TGF-β1DNA-(K)16GRGDSPC-PLGA-[ASP-PEG]n仿生骨基质是一种非常有前景的用于加速骨再生的支架生物材料。