IEEE Trans Med Imaging. 2014 Feb;33(2):400-7. doi: 10.1109/TMI.2013.2285472. Epub 2013 Oct 11.
Most 3-D magnetic particle imaging (MPI) scanners currently use permanent magnets to create the strong gradient field required for high resolution MPI. However, using permanent magnets limits the field of view (FOV) due to the large amount of energy required to move the field free point (FFP) from the center of the scanner. To address this issue, an alternative approach called "Traveling Wave MPI" is here presented. This approach employs a novel gradient system, the dynamic linear gradient array, to cover a large FOV while dynamically creating a strong magnetic gradient. The proposed design also enables the use of a so-called line-scanning mode, which simplifies the FFP trajectory to a linear path through the 3-D volume. This results in simplified mathematics, which facilitates the image reconstruction.
大多数 3-D 磁粒子成像 (MPI) 扫描仪目前使用永磁体来产生高分辨率 MPI 所需的强梯度场。然而,由于需要大量能量来将场自由点 (FFP) 从扫描仪的中心移动,因此使用永磁体限制了视野 (FOV)。为了解决这个问题,这里提出了一种称为“行波 MPI”的替代方法。这种方法采用了一种新颖的梯度系统,即动态线性梯度阵列,在动态产生强磁场梯度的同时覆盖大的 FOV。所提出的设计还允许使用所谓的线扫描模式,该模式将 FFP 轨迹简化为通过 3-D 体积的线性路径。这导致简化了数学运算,从而简化了图像重建。
IEEE Trans Med Imaging. 2013-10-11
IEEE Trans Med Imaging. 2014-10-24
Med Phys. 2019-2-22
IEEE Trans Med Imaging. 2014-9-11
Phys Med Biol. 2016-9-21
Rev Sci Instrum. 2020-4-1
IEEE Trans Med Imaging. 2016-6-13
Z Med Phys. 2012-8-19
Phys Med Biol. 2020-9-30
IEEE Trans Med Imaging. 2020-12
Mil Med Res. 2025-4-27
Commun Med (Lond). 2025-3-13
Sci Rep. 2023-9-22
Vis Comput Ind Biomed Art. 2022-10-1
IEEE Trans Med Imaging. 2019-2-11
Nanomaterials (Basel). 2018-10-23