文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

行波式磁粒子成像

Traveling wave magnetic particle imaging.

出版信息

IEEE Trans Med Imaging. 2014 Feb;33(2):400-7. doi: 10.1109/TMI.2013.2285472. Epub 2013 Oct 11.


DOI:10.1109/TMI.2013.2285472
PMID:24132006
Abstract

Most 3-D magnetic particle imaging (MPI) scanners currently use permanent magnets to create the strong gradient field required for high resolution MPI. However, using permanent magnets limits the field of view (FOV) due to the large amount of energy required to move the field free point (FFP) from the center of the scanner. To address this issue, an alternative approach called "Traveling Wave MPI" is here presented. This approach employs a novel gradient system, the dynamic linear gradient array, to cover a large FOV while dynamically creating a strong magnetic gradient. The proposed design also enables the use of a so-called line-scanning mode, which simplifies the FFP trajectory to a linear path through the 3-D volume. This results in simplified mathematics, which facilitates the image reconstruction.

摘要

大多数 3-D 磁粒子成像 (MPI) 扫描仪目前使用永磁体来产生高分辨率 MPI 所需的强梯度场。然而,由于需要大量能量来将场自由点 (FFP) 从扫描仪的中心移动,因此使用永磁体限制了视野 (FOV)。为了解决这个问题,这里提出了一种称为“行波 MPI”的替代方法。这种方法采用了一种新颖的梯度系统,即动态线性梯度阵列,在动态产生强磁场梯度的同时覆盖大的 FOV。所提出的设计还允许使用所谓的线扫描模式,该模式将 FFP 轨迹简化为通过 3-D 体积的线性路径。这导致简化了数学运算,从而简化了图像重建。

相似文献

[1]
Traveling wave magnetic particle imaging.

IEEE Trans Med Imaging. 2013-10-11

[2]
Electronic field free line rotation and relaxation deconvolution in magnetic particle imaging.

IEEE Trans Med Imaging. 2014-10-24

[3]
Trajectory analysis for field free line magnetic particle imaging.

Med Phys. 2019-2-22

[4]
Axially elongated field-free point data acquisition in magnetic particle imaging.

IEEE Trans Med Imaging. 2014-9-11

[5]
First in vivo traveling wave magnetic particle imaging of a beating mouse heart.

Phys Med Biol. 2016-9-21

[6]
Parallel magnetic particle imaging.

Rev Sci Instrum. 2020-4-1

[7]
Non-Equispaced System Matrix Acquisition for Magnetic Particle Imaging Based on Lissajous Node Points.

IEEE Trans Med Imaging. 2016-6-13

[8]
Magnetic particle imaging: introduction to imaging and hardware realization.

Z Med Phys. 2012-8-19

[9]
A concept for a magnetic particle imaging scanner with Halbach arrays.

Phys Med Biol. 2020-9-30

[10]
Tomographic Field Free Line Magnetic Particle Imaging With an Open-Sided Scanner Configuration.

IEEE Trans Med Imaging. 2020-12

引用本文的文献

[1]
Advances in magnetic particle imaging and perspectives on liver imaging.

ILIVER. 2022-11-8

[2]
Exploring the diagnostic potential: magnetic particle imaging for brain diseases.

Mil Med Res. 2025-4-27

[3]
Magnetic particle imaging angiography of the femoral artery in a human cadaveric perfusion model.

Commun Med (Lond). 2025-3-13

[4]
Harmonic dependence of thermal magnetic particle imaging.

Sci Rep. 2023-9-22

[5]
iMPI: portable human-sized magnetic particle imaging scanner for real-time endovascular interventions.

Sci Rep. 2023-6-28

[6]
Recent developments of the reconstruction in magnetic particle imaging.

Vis Comput Ind Biomed Art. 2022-10-1

[7]
Concept for using magnetic particle imaging for intraoperative margin analysis in breast-conserving surgery.

Sci Rep. 2021-6-29

[8]
Magnetic Particle Imaging meets Computed Tomography: first simultaneous imaging.

Sci Rep. 2019-9-2

[9]
Pulsed Excitation in Magnetic Particle Imaging.

IEEE Trans Med Imaging. 2019-2-11

[10]
Spatial and Temperature Resolutions of Magnetic Nanoparticle Temperature Imaging with a Scanning Magnetic Particle Spectrometer.

Nanomaterials (Basel). 2018-10-23

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索