Suppr超能文献

肿瘤荷瘤小鼠中纳米颗粒聚集和解离动力学的近红外荧光能量转移成像。

Near-infrared fluorescence energy transfer imaging of nanoparticle accumulation and dissociation kinetics in tumor-bearing mice.

机构信息

Condensed Matter and Interfaces, Debye Institute for Nanomaterials Science, Utrecht University , Princetonplein 5, 3584 CC Utrecht, The Netherlands.

出版信息

ACS Nano. 2013 Nov 26;7(11):10362-70. doi: 10.1021/nn404782p. Epub 2013 Oct 24.

Abstract

In the current study we show the dissociation and tumor accumulation dynamics of dual-labeled near-infrared quantum dot core self-assembled lipidic nanoparticles (SALNPs) in a mouse model upon intravenous administration. Using advanced in vivo fluorescence energy transfer imaging techniques, we observed swift exchange with plasma protein components in the blood and progressive SALNP dissociation and subsequent trafficking of individual SALNP components following tumor accumulation. Our results suggest that upon intravenous administration SALNPs quickly transform, which may affect their functionality. The presented technology provides a modular in vivo tool to visualize SALNP behavior in real time and may contribute to improving the therapeutic outcome or molecular imaging signature of SALNPs.

摘要

在当前的研究中,我们展示了在静脉注射后,双标记近红外量子点核自组装脂质纳米粒子(SALNP)在小鼠模型中的解离和肿瘤积累动力学。我们使用先进的体内荧光能量转移成像技术,观察到血液中与血浆蛋白成分的快速交换以及 SALNP 解离的逐渐进展,以及随后的单个 SALNP 成分在肿瘤积累后的转运。我们的结果表明,静脉注射后,SALNP 会迅速发生转化,这可能会影响它们的功能。所提出的技术提供了一种模块化的体内工具,可以实时可视化 SALNP 的行为,并可能有助于改善 SALNP 的治疗效果或分子成像特征。

相似文献

2
Probing lipid coating dynamics of quantum dot core micelles via Förster resonance energy transfer.
Small. 2014 Mar 26;10(6):1163-70. doi: 10.1002/smll.201301962. Epub 2013 Dec 16.
3
Plasmon-enhanced Förster energy transfer between semiconductor quantum dots: multipole effects.
Opt Express. 2010 Mar 29;18(7):6516-21. doi: 10.1364/OE.18.006516.
4
Nanoparticle fluorescence based technology for biological applications.
J Nanosci Nanotechnol. 2008 Mar;8(3):1019-51. doi: 10.1166/jnn.2008.301.
7
Ultrafast dynamics of excitons in semiconductor quantum dots on a plasmonically active nano-structured silver film.
Nanotechnology. 2011 May 13;22(19):195704. doi: 10.1088/0957-4484/22/19/195704. Epub 2011 Mar 23.
8
Specific Systems for Imaging.
Exp Suppl. 2018;110:69-97. doi: 10.1007/978-3-319-78259-1_3.
9
Quantum dot loaded immunomicelles for tumor imaging.
BMC Med Imaging. 2010 Oct 18;10:22. doi: 10.1186/1471-2342-10-22.
10
FRET imaging approaches for in vitro and in vivo characterization of synthetic lipid nanoparticles.
Mol Pharm. 2014 Sep 2;11(9):3133-44. doi: 10.1021/mp500329z. Epub 2014 Aug 13.

引用本文的文献

1
Understanding the in vivo Fate of Advanced Materials by Imaging.
Adv Funct Mater. 2020 Sep 10;30(37). doi: 10.1002/adfm.201910369. Epub 2020 Apr 6.
2
Therapeutic Supramolecular Polymers: Designs and Applications.
Prog Polym Sci. 2024 Jan;148. doi: 10.1016/j.progpolymsci.2023.101769. Epub 2023 Dec 2.
3
Functional Diversity in Radiolabeled Nanoceramics and Related Biomaterials for the Multimodal Imaging of Tumors.
ACS Bio Med Chem Au. 2023 Aug 8;3(5):389-417. doi: 10.1021/acsbiomedchemau.3c00021. eCollection 2023 Oct 18.
4
Improved Core Viscosity Achieved by PDLLACo-Incorporation Promoted Drug Loading and Stability of mPEG-b-PDLLA Micelles.
Pharm Res. 2022 Feb;39(2):369-379. doi: 10.1007/s11095-022-03174-5. Epub 2022 Feb 3.
5
FRET Ratiometric Nanoprobes for Nanoparticle Monitoring.
Biosensors (Basel). 2021 Dec 9;11(12):505. doi: 10.3390/bios11120505.
6
Optical-Property-Enhancing Novel Near-Infrared Active Niosome Nanoformulation for Deep-Tissue Bioimaging.
ACS Omega. 2021 Aug 25;6(35):22616-22624. doi: 10.1021/acsomega.1c02632. eCollection 2021 Sep 7.
7
The role of critical micellization concentration in efficacy and toxicity of supramolecular polymers.
Proc Natl Acad Sci U S A. 2020 Mar 3;117(9):4518-4526. doi: 10.1073/pnas.1913655117. Epub 2020 Feb 18.
8
Brief update on endocytosis of nanomedicines.
Adv Drug Deliv Rev. 2019 Apr;144:90-111. doi: 10.1016/j.addr.2019.08.004. Epub 2019 Aug 13.
9
In Vivo Biosensing Using Resonance Energy Transfer.
Biosensors (Basel). 2019 Jun 3;9(2):76. doi: 10.3390/bios9020076.
10
Applications of nanoparticles in biomedical imaging.
Nanoscale. 2019 Jan 17;11(3):799-819. doi: 10.1039/c8nr07769j.

本文引用的文献

1
Transferrin-functionalized nanoparticles lose their targeting capabilities when a biomolecule corona adsorbs on the surface.
Nat Nanotechnol. 2013 Feb;8(2):137-43. doi: 10.1038/nnano.2012.237. Epub 2013 Jan 20.
2
Inorganic nanocrystals as contrast agents in MRI: synthesis, coating and introduction of multifunctionality.
NMR Biomed. 2013 Jul;26(7):766-80. doi: 10.1002/nbm.2909. Epub 2013 Jan 10.
3
Probing of the assembly structure and dynamics within nanoparticles during interaction with blood proteins.
ACS Nano. 2012 Nov 27;6(11):9485-95. doi: 10.1021/nn302317j. Epub 2012 Oct 30.
5
Perspectives and opportunities for nanomedicine in the management of atherosclerosis.
Nat Rev Drug Discov. 2011 Oct 21;10(11):835-52. doi: 10.1038/nrd3578.
6
Bio-inspired, bioengineered and biomimetic drug delivery carriers.
Nat Rev Drug Discov. 2011 Jul 1;10(7):521-35. doi: 10.1038/nrd3499.
7
Self-assembled targeted nanoparticles: evolution of technologies and bench to bedside translation.
Acc Chem Res. 2011 Oct 18;44(10):1123-34. doi: 10.1021/ar200054n. Epub 2011 Jun 21.
8
A versatile and tunable coating strategy allows control of nanocrystal delivery to cell types in the liver.
Bioconjug Chem. 2011 Mar 16;22(3):353-61. doi: 10.1021/bc1003179. Epub 2011 Mar 1.
10
Delivering nanomedicine to solid tumors.
Nat Rev Clin Oncol. 2010 Nov;7(11):653-64. doi: 10.1038/nrclinonc.2010.139. Epub 2010 Sep 14.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验