Broad Institute of MIT and Harvard, Cambridge, MA, USA; Bioinformatics Program, Boston University, Boston, MA, USA.
Eur J Immunol. 2014 Jan;44(1):285-95. doi: 10.1002/eji.201343657. Epub 2013 Nov 29.
Vaccines are very effective at preventing infectious disease but not all recipients mount a protective immune response to vaccination. Recently, gene expression profiles of PBMC samples in vaccinated individuals have been used to predict the development of protective immunity. However, the magnitude of change in gene expression that separates vaccine responders and nonresponders is likely to be small and distributed across networks of genes, making the selection of predictive and biologically relevant genes difficult. Here we apply a new approach to predicting vaccine response based on coordinated upregulation of sets of biologically informative genes in postvaccination gene expression profiles. We found that enrichment of gene sets related to proliferation and immunoglobulin genes accurately segregated high responders to influenza vaccination from low responders and achieved a prediction accuracy of 88% in an independent clinical trial. Many of the genes in these gene sets would not have been identified using conventional, single-gene level approaches because of their subtle upregulation in vaccine responders. Our results demonstrate that gene set enrichment method can capture subtle transcriptional changes and may be a generally useful approach for developing and interpreting predictive models of the human immune response.
疫苗在预防传染病方面非常有效,但并非所有接种者都能对疫苗产生保护性免疫反应。最近,人们已经使用接种个体的 PBMC 样本的基因表达谱来预测保护性免疫的发展。然而,区分疫苗应答者和无应答者的基因表达变化的幅度可能很小,并且分布在基因网络中,这使得预测和生物学上相关的基因的选择变得困难。在这里,我们应用一种新的方法来预测疫苗反应,该方法基于接种后基因表达谱中生物信息基因的协调上调。我们发现,与增殖和免疫球蛋白基因相关的基因集的富集可以准确地区分流感疫苗的高应答者和低应答者,在一项独立的临床试验中达到了 88%的预测准确性。由于这些基因在疫苗应答者中的轻微上调,这些基因集中的许多基因如果使用传统的单基因水平方法是无法识别的。我们的研究结果表明,基因集富集方法可以捕捉到细微的转录变化,并且可能是开发和解释人类免疫反应预测模型的一种普遍有用的方法。