Department of Geography, University of Hawai'i at Mānoa, , 445 Saunders Hall, 2424 Maile Way, Honolulu, HI 96822, USA, NOAA Biogeography Branch, , 1305 East-West Hwy, Silver Spring, MD 20910, USA, Department of Biology, University of Hawai'i at Mānoa, , Edmondson Hall, 2538 McCarthy Mall, Honolulu, HI 96822, USA, Department of Oceanography, School of Ocean and Earth Science and Technology, University of Hawai'i at Mānoa, , 1000 Pope Road, Marine Science Building 205, Honolulu, HI 96822, USA, Department of Ecology, Evolution and Marine Biology, Bren School of Environmental Science and Management, University of California at Santa Barbara, , 2400 Bren Hall, Santa Barbara, CA 93106-5131, USA, Center for Ocean Solutions, Woods Institute for the Environment, Stanford University, , 99 Pacific Street, Suite 555E, Monterey, CA 93940, USA.
Proc Biol Sci. 2013 Nov 6;280(1773):20131684. doi: 10.1098/rspb.2013.1684. Print 2013 Dec 22.
Increases in the demand and price for industrial metals, combined with advances in technological capabilities have now made deep-sea mining more feasible and economically viable. In order to balance economic interests with the conservation of abyssal plain ecosystems, it is becoming increasingly important to develop a systematic approach to spatial management and zoning of the deep sea. Here, we describe an expert-driven systematic conservation planning process applied to inform science-based recommendations to the International Seabed Authority for a system of deep-sea marine protected areas (MPAs) to safeguard biodiversity and ecosystem function in an abyssal Pacific region targeted for nodule mining (e.g. the Clarion-Clipperton fracture zone, CCZ). Our use of geospatial analysis and expert opinion in forming the recommendations allowed us to stratify the proposed network by biophysical gradients, maximize the number of biologically unique seamounts within each subregion, and minimize socioeconomic impacts. The resulting proposal for an MPA network (nine replicate 400 × 400 km MPAs) covers 24% (1 440 000 km(2)) of the total CCZ planning region and serves as example of swift and pre-emptive conservation planning across an unprecedented area in the deep sea. As pressure from resource extraction increases in the future, the scientific guiding principles outlined in this research can serve as a basis for collaborative international approaches to ocean management.
随着工业金属需求和价格的增长,以及技术能力的进步,深海采矿现在变得更加可行和经济可行。为了在保护深海平原生态系统的利益与经济利益之间取得平衡,制定一种系统的深海空间管理和分区方法变得越来越重要。在这里,我们描述了一种专家驱动的系统保护规划过程,该过程用于向国际海底管理局提供科学建议,以建立深海海洋保护区 (MPA) 系统,保护目标为结核采矿的太平洋深海区域的生物多样性和生态系统功能(例如克拉里昂-克利珀顿断裂带,CCZ)。我们在形成建议时使用地理空间分析和专家意见,使我们能够按生物物理梯度对拟议网络进行分层,在每个分区内最大限度地增加具有生物独特性的海山数量,并最大限度地减少社会经济影响。拟议的 MPA 网络(九个重复的 400×400 公里 MPA)覆盖了 CCZ 规划区域的 24%(1440000 平方公里),并为在深海这一前所未有的区域内迅速和先发制人的保护规划提供了范例。随着未来资源开采压力的增加,本研究中概述的科学指导原则可以为海洋管理的国际合作方法提供基础。