Department of Cell Biology and Anatomy, University of North Texas Health Science Center, Fort Worth, TX, USA.
Cell Death Dis. 2013 Nov 7;4(11):e903. doi: 10.1038/cddis.2013.362.
Several neurodegenerative diseases and brain injury involve reactive oxygen species and implicate oxidative stress in disease mechanisms. Hydrogen peroxide (H2O2) formation due to mitochondrial superoxide leakage perpetuates oxidative stress in neuronal injury. Catalase, an H2O2-degrading enzyme, thus remains an important antioxidant therapy target. However, catalase therapy is restricted by its labile nature and inadequate delivery. Here, a nanotechnology approach was evaluated using catalase-loaded, poly(lactic co-glycolic acid) nanoparticles (NPs) in human neuronal protection against oxidative damage. This study showed highly efficient catalase encapsulation capable of retaining ~99% enzymatic activity. NPs released catalase rapidly, and antioxidant activity was sustained for over a month. NP uptake in human neurons was rapid and nontoxic. Although human neurons were highly sensitive to H2O2, NP-mediated catalase delivery successfully protected cultured neurons from H2O2-induced oxidative stress. Catalase-loaded NPs significantly reduced H2O2-induced protein oxidation, DNA damage, mitochondrial membrane transition pore opening and loss of cell membrane integrity and restored neuronal morphology, neurite network and microtubule-associated protein-2 levels. Further, catalase-loaded NPs improved neuronal recovery from H2O2 pre-exposure better than free catalase, suggesting possible applications in ameliorating stroke-relevant oxidative stress. Brain targeting of catalase-loaded NPs may find wide therapeutic applications for oxidative stress-associated acute and chronic neurodegenerative disorders.
几种神经退行性疾病和脑损伤涉及活性氧物种,并暗示氧化应激在疾病机制中起作用。线粒体超氧化物泄漏导致的过氧化氢 (H2O2) 形成使神经元损伤中的氧化应激持续存在。过氧化氢酶是一种 H2O2 降解酶,因此仍然是一种重要的抗氧化治疗靶点。然而,过氧化氢酶治疗受到其不稳定性质和不足的递送的限制。在这里,使用负载过氧化氢酶的聚(乳酸-共-乙醇酸)纳米颗粒 (NPs) 评估了一种纳米技术方法,以保护人类神经元免受氧化损伤。这项研究表明,能够保留~99%酶活性的高效过氧化氢酶包封。NPs 迅速释放过氧化氢酶,并且抗氧化活性持续了一个多月。NP 在人神经元中的摄取迅速且无毒。尽管人神经元对 H2O2 高度敏感,但 NP 介导的过氧化氢酶递送成功保护培养的神经元免受 H2O2 诱导的氧化应激。负载过氧化氢酶的 NPs 显著降低了 H2O2 诱导的蛋白质氧化、DNA 损伤、线粒体膜过渡孔开放以及细胞膜完整性丧失,并恢复了神经元形态、神经突网络和微管相关蛋白-2 水平。此外,负载过氧化氢酶的 NPs 改善了神经元从 H2O2 预暴露中的恢复,优于游离过氧化氢酶,这表明其可能在改善与中风相关的氧化应激方面具有应用前景。负载过氧化氢酶的 NPs 的脑靶向可能为与氧化应激相关的急性和慢性神经退行性疾病找到广泛的治疗应用。