Suppr超能文献

用于表征溶液中生物分子的高通量小角X射线散射:一种实用方法。

High-throughput SAXS for the characterization of biomolecules in solution: a practical approach.

作者信息

Dyer Kevin N, Hammel Michal, Rambo Robert P, Tsutakawa Susan E, Rodic Ivan, Classen Scott, Tainer John A, Hura Greg L

机构信息

Physcial Bioscience Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.

出版信息

Methods Mol Biol. 2014;1091:245-58. doi: 10.1007/978-1-62703-691-7_18.

Abstract

The recent innovation of collecting X-ray scattering from solutions containing purified macromolecules in high-throughput has yet to be truly exploited by the biological community. Yet, this capability is becoming critical given that the growth of sequence and genomics data is significantly outpacing structural biology results. Given the huge mismatch in information growth rates between sequence and structural methods, their combined high-throughput and high success rate make high-throughput small angle X-ray scattering (HT-SAXS) analyses increasingly valuable. HT-SAXS connects sequence as well as NMR and crystallographic results to biological outcomes by defining the flexible and dynamic complexes controlling cell biology. Commonly falling under the umbrella of bio-SAXS, HT-SAXS data collection pipelines have or are being developed at most synchrotrons. How investigators practically get their biomolecules of interest into these pipelines, balance sample requirements and manage HT-SAXS data output format varies from facility to facility. While these features are unlikely to be standardized across synchrotron beamlines, a detailed description of HT-SAXS issues for one pipeline provides investigators with a practical guide to the general procedures they will encounter. One of the longest running and generally accessible HT-SAXS endstations is the SIBYLS beamline at the Advanced Light Source in Berkeley CA. Here we describe the current state of the SIBYLS HT-SAXS pipeline, what is necessary for investigators to integrate into it, the output format and a summary of results from 2 years of operation. Assessment of accumulated data informs issues of concentration, background, buffers, sample handling, sample shipping, homogeneity requirements, error sources, aggregation, radiation sensitivity, interpretation, and flags for concern. By quantitatively examining success and failures as a function of sample and data characteristics, we define practical concerns, considerations, and concepts for optimally applying HT-SAXS techniques to biological samples.

摘要

近期出现的从含有纯化大分子的溶液中高通量收集X射线散射数据的创新技术,尚未被生物学界真正利用。然而,鉴于序列数据和基因组学数据的增长速度远远超过结构生物学的研究成果,这种能力正变得至关重要。考虑到序列分析方法和结构分析方法在信息增长速度上存在巨大差距,高通量小角X射线散射(HT-SAXS)分析因其高通量和高成功率而变得越来越有价值。HT-SAXS通过定义控制细胞生物学的灵活且动态的复合物,将序列以及核磁共振(NMR)和晶体学结果与生物学结果联系起来。HT-SAXS数据收集流程通常属于生物小角X射线散射(bio-SAXS)范畴,大多数同步加速器都已经或正在开发相关流程。研究人员如何将他们感兴趣的生物分子实际纳入这些流程、平衡样品要求以及管理HT-SAXS数据输出格式,因机构而异。虽然这些特点不太可能在同步加速器光束线上实现标准化,但对一个流程的HT-SAXS问题进行详细描述,能为研究人员提供一份他们将遇到的一般程序实用指南。运行时间最长且通常可使用的HT-SAXS终端站之一是位于加利福尼亚州伯克利市先进光源的SIBYLS光束线。在此,我们描述SIBYLS HT-SAXS流程的当前状态、研究人员将其整合所需的条件、输出格式以及两年运行的结果总结。对积累数据的评估揭示了浓度、背景、缓冲液、样品处理、样品运输、均一性要求、误差来源、聚集、辐射敏感性、解释以及需关注标记等问题。通过定量考察成功与失败与样品和数据特征的关系,我们定义了将HT-SAXS技术最佳应用于生物样品的实际关注点、注意事项和概念。

相似文献

1
High-throughput SAXS for the characterization of biomolecules in solution: a practical approach.
Methods Mol Biol. 2014;1091:245-58. doi: 10.1007/978-1-62703-691-7_18.
3
Software for the high-throughput collection of SAXS data using an enhanced Blu-Ice/DCS control system.
J Synchrotron Radiat. 2010 Nov;17(6):774-81. doi: 10.1107/S0909049510028566. Epub 2010 Sep 3.
4
Structural Modeling Using Solution Small-Angle X-ray Scattering (SAXS).
J Mol Biol. 2020 Apr 17;432(9):3078-3092. doi: 10.1016/j.jmb.2020.01.030. Epub 2020 Feb 6.
6
Limiting radiation damage for high-brilliance biological solution scattering: practical experience at the EMBL P12 beamline PETRAIII.
J Synchrotron Radiat. 2015 Mar;22(2):273-9. doi: 10.1107/S1600577515000375. Epub 2015 Feb 4.
7
Advanced sample environments and sample requirements for biological SAXS.
Methods Enzymol. 2022;677:1-39. doi: 10.1016/bs.mie.2022.08.009. Epub 2022 Sep 22.
8
Upgrade of MacCHESS facility for X-ray scattering of biological macromolecules in solution.
J Synchrotron Radiat. 2015 Jan;22(1):180-6. doi: 10.1107/S1600577514020360. Epub 2015 Jan 1.
9
Structural Analyses of Intrinsically Disordered Proteins by Small-Angle X-Ray Scattering.
Methods Mol Biol. 2020;2141:249-269. doi: 10.1007/978-1-0716-0524-0_12.
10
Sample and Buffer Preparation for SAXS.
Adv Exp Med Biol. 2017;1009:11-30. doi: 10.1007/978-981-10-6038-0_2.

引用本文的文献

2
A combined designed CSP and Pfs48/45 infection and transmission blocking vaccine for malaria.
NPJ Vaccines. 2025 Sep 2;10(1):208. doi: 10.1038/s41541-025-01262-2.
3
ALS-ENABLE: creating synergy and opportunity at the Advanced Light Source synchrotron structural biology beamlines.
J Synchrotron Radiat. 2025 Jul 1;32(Pt 4):1059-1067. doi: 10.1107/S1600577525004205. Epub 2025 Jun 18.
4
Local structural flexibility drives oligomorphism in computationally designed protein assemblies.
Nat Struct Mol Biol. 2025 Feb 26. doi: 10.1038/s41594-025-01490-z.
6
Design of pseudosymmetric protein hetero-oligomers.
Nat Commun. 2024 Dec 18;15(1):10684. doi: 10.1038/s41467-024-54913-8.
7
A goldilocks computational protocol for inhibitor discovery targeting DNA damage responses including replication-repair functions.
Front Mol Biosci. 2024 Nov 28;11:1442267. doi: 10.3389/fmolb.2024.1442267. eCollection 2024.
8
Reverse engineering of Onivyde® - Irinotecan liposome injection.
Int J Pharm. 2025 Jan 25;669:125000. doi: 10.1016/j.ijpharm.2024.125000. Epub 2024 Nov 27.
10
Influence of device configuration and noise on a machine learning predictor for the selection of nanoparticle small-angle X-ray scattering models.
Acta Crystallogr A Found Adv. 2024 Nov 1;80(Pt 6):405-413. doi: 10.1107/S2053273324007988. Epub 2024 Sep 23.

本文引用的文献

1
New developments in the program package for small-angle scattering data analysis.
J Appl Crystallogr. 2012 Mar 15;45(Pt 2):342-350. doi: 10.1107/S0021889812007662. eCollection 2012 Apr 1.
2
Comprehensive macromolecular conformations mapped by quantitative SAXS analyses.
Nat Methods. 2013 Jun;10(6):453-4. doi: 10.1038/nmeth.2453.
3
Accurate assessment of mass, models and resolution by small-angle scattering.
Nature. 2013 Apr 25;496(7446):477-81. doi: 10.1038/nature12070.
4
Super-resolution in solution X-ray scattering and its applications to structural systems biology.
Annu Rev Biophys. 2013;42:415-41. doi: 10.1146/annurev-biophys-083012-130301. Epub 2013 Mar 11.
6
Publication guidelines for structural modelling of small-angle scattering data from biomolecules in solution.
Acta Crystallogr D Biol Crystallogr. 2012 Jun;68(Pt 6):620-6. doi: 10.1107/S0907444912012073. Epub 2012 May 17.
7
An integrated high-throughput data acquisition system for biological solution X-ray scattering studies.
J Synchrotron Radiat. 2012 May;19(Pt 3):431-4. doi: 10.1107/S0909049512008072. Epub 2012 Mar 17.
8
High-throughput biological small-angle X-ray scattering with a robotically loaded capillary cell.
J Appl Crystallogr. 2012 Apr 1;45(Pt 2):213-223. doi: 10.1107/S0021889812000957. Epub 2012 Feb 9.
9
Plant UVR8 photoreceptor senses UV-B by tryptophan-mediated disruption of cross-dimer salt bridges.
Science. 2012 Mar 23;335(6075):1492-6. doi: 10.1126/science.1218091. Epub 2012 Feb 9.
10
Antagonists induce a conformational change in cIAP1 that promotes autoubiquitination.
Science. 2011 Oct 21;334(6054):376-80. doi: 10.1126/science.1207862.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验