Suppr超能文献

不同科双子叶植物中海藻氨酸合成途径的比较生化和免疫研究。

Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons.

机构信息

MSU-DOE Plant Research Laboratory, Michigan State University, 48824-1312, East Lansing, MI, USA.

出版信息

Planta. 1989 Jun;178(3):342-52. doi: 10.1007/BF00391862.

Abstract

Members of the Chenopodiaceae can accumulate high levels (>100 μmol·(g DW)(-1)) of glycine betaine (betaine) in leaves when salinized. Chenopodiaceae synthesize betaine by a two-step oxidation of choline (choline→betaine aldehyde→ betaine), with the second step catalyzed by betaine aldehyde dehydrogenase (BADH, EC 1.2.1.8). High betaine levels have also been reported in leaves of species from several distantly-related families of dicotyledons, raising the question of whether the same betaine-synthesis pathway is used in all cases.Fast atom bombardment mass spectrometry showed that betaine levels of >100 μmol·(g DW)(-1) are present in Lycium ferocissimum Miers (Solanaceae), Helianthus annuus L. (Asteraceae), Convolvulus arvensis L. (Convolvulaceae), and Amaranthus caudatus L. (Amaranthaceae), that salinization promotes betaine accumulation in these plants, and that they can convert supplied choline to betaine aldehyde and betaine. Nicotiana tabacum L. and Lycopersicon lycopersicum (L.) Karst. ex Farw. (Solanaceae), Lactuca sativa L. (Asteraceae) and Ipomoea purpurea L. (Convolvulaceae) also contained betaine, but at a low level (0.1-0.5 μmol·(g DW)(-1). Betaine aldehyde dehydrogenase activity assays, immunotitration and immunoblotting demonstrated that the betaine-accumulating species have a BADH enzyme recognized by antibodies raised against BADH from Spinacia oleracea L. (Chenopodiaceae), and that the Mr of the BADH monomer is in all cases close to 63 000. These data indicate that the choline→betaine aldehyde→betaine pathway may have evolved by vertical descent from an early angiosperm ancestor, and might be widespread (albeit not always strongly expressed) among flowering plants. Consistent with these suggestions, Magnolia x soulangiana was found to have a low level of betaine, and to express a protein of Mr 63 000 which cross-reacted with antibodies to BADH from Spinacia oleracea.

摘要

盐胁迫条件下,藜科成员的叶片中可积累高浓度(>100 μmol·(g DW)(-1))的甘氨酸甜菜碱(甜菜碱)。 甜菜碱是通过两步氧化胆碱(胆碱→甜菜碱醛→甜菜碱)合成的,第二步由甜菜碱醛脱氢酶(BADH,EC 1.2.1.8)催化。在几种远缘双子叶植物科的物种的叶片中也报道了高浓度的甜菜碱,这就提出了一个问题,即在所有情况下是否使用相同的甜菜碱合成途径。 快速原子轰击质谱法表明,在茄科的宁夏枸杞(Lycium ferocissimum Miers)、菊科的向日葵(Helianthus annuus L.)、旋花科的田旋花(Convolvulus arvensis L.)和苋科的苋菜(Amaranthus caudatus L.)中,存在>100 μmol·(g DW)(-1)的甜菜碱水平,盐胁迫促进了这些植物中甜菜碱的积累,并且它们可以将供给的胆碱转化为甜菜碱醛和甜菜碱。 烟草(Nicotiana tabacum L.)和番茄(Lycopersicon lycopersicum (L.) Karst. ex Farw.)、菊科的莴苣(Lactuca sativa L.)和旋花科的番薯(Ipomoea purpurea L.)也含有甜菜碱,但含量较低(0.1-0.5 μmol·(g DW)(-1))。甜菜碱醛脱氢酶活性测定、免疫滴定和免疫印迹表明,在积累甜菜碱的物种中,有一种 BADH 酶被针对 Spinacia oleracea L. (藜科)BADH 产生的抗体识别,并且 BADH 单体的 Mr 在所有情况下都接近 63000。这些数据表明,胆碱→甜菜碱醛→甜菜碱途径可能是通过从早期被子植物祖先的垂直进化而来的,并且可能在开花植物中广泛存在(尽管表达并不总是很强)。与这些建议一致的是,发现玉兰杂种(Magnolia x soulangiana)甜菜碱含量低,并表达一种与 Spinacia oleracea 中 BADH 发生交叉反应的 Mr 为 63000 的蛋白质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验