Suppr超能文献

花色苷生物合成中二氢黄酮醇 4-还原酶的功能表征为花色苷抵御非生物胁迫的功能提供了直接证据。

Functional characterization of Dihydroflavonol-4-reductase in anthocyanin biosynthesis of purple sweet potato underlies the direct evidence of anthocyanins function against abiotic stresses.

机构信息

National Key Laboratory of Plant Molecular Genetics and National Center for Plant Gene Research (Shanghai), Institute of Plant Physiology and Ecology, Shanghai Institutes for Biological Sciences, Chinese Academy of Science, Shanghai, China.

出版信息

PLoS One. 2013 Nov 4;8(11):e78484. doi: 10.1371/journal.pone.0078484. eCollection 2013.

Abstract

Dihydroflavonol-4-reductase (DFR) is a key enzyme in the catalysis of the stereospecific reduction of dihydroflavonols to leucoanthocyanidins in anthocyanin biosynthesis. In the purple sweet potato (Ipomoea batatas Lam.) cv. Ayamurasaki, expression of the IbDFR gene was strongly associated with anthocyanin accumulation in leaves, stems and roots. Overexpression of the IbDFR in Arabidopsis tt3 mutants fully complemented the pigmentation phenotype of the seed coat, cotyledon and hypocotyl. Downregulation of IbDFR expression in transgenic sweet potato (DFRi) using an RNAi approach dramatically reduced anthocyanin accumulation in young leaves, stems and storage roots. In contrast, the increase of flavonols quercetin-3-O-hexose-hexoside and quercetin-3-O-glucoside in the leaves and roots of DFRi plants is significant. Therefore, the metabolic pathway channeled greater flavonol influx in the DFRi plants when their anthocyanin and proanthocyanidin accumulation were decreased. These plants also displayed reduced antioxidant capacity compared to the wild type. After 24 h of cold treatment and 2 h recovery, the wild-type plants were almost fully restored to the initial phenotype compared to the slower recovery of DFRi plants, in which the levels of electrolyte leakage and hydrogen peroxide accumulation were dramatically increased. These results provide direct evidence of anthocyanins function in the protection against oxidative stress in the sweet potato. The molecular characterization of the IbDFR gene in the sweet potato not only confirms its important roles in flavonoid metabolism but also supports the protective function of anthocyanins of enhanced scavenging of reactive oxygen radicals in plants under stressful conditions.

摘要

二氢黄酮醇 4-还原酶(DFR)是花色苷生物合成中催化二氢黄酮醇立体特异性还原为无色花色素的关键酶。在紫色甘薯(Ipomoea batatas Lam.)cv. Ayamurasaki 中,IbDFR 基因的表达与叶片、茎和根中的花色苷积累强烈相关。在 Arabidopsis tt3 突变体中过表达 IbDFR 完全互补了种皮、子叶和下胚轴的色素表型。利用 RNAi 方法下调转基因甘薯(DFRi)中 IbDFR 的表达,可显著降低幼叶、茎和块根中的花色苷积累。相比之下,DFRi 植株叶片和根中类黄酮槲皮素-3-O-己糖苷和槲皮素-3-O-葡萄糖苷的增加是显著的。因此,当 DFRi 植物中花色苷和原花色素的积累减少时,代谢途径将更多的类黄酮通量引导到 DFRi 植物中。这些植物的抗氧化能力也比野生型低。在 24 h 的冷处理和 2 h 的恢复后,与 DFRi 植物较慢的恢复相比,野生型植物几乎完全恢复到初始表型,其中电解质渗漏和过氧化氢积累的水平显著增加。这些结果为甘薯中花色苷在抗氧化应激中的保护作用提供了直接证据。甘薯 IbDFR 基因的分子特征不仅证实了其在类黄酮代谢中的重要作用,还支持了花色苷增强植物在胁迫条件下清除活性氧自由基的保护功能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c603/3817210/4990f0498f82/pone.0078484.g001.jpg

相似文献

3
Anthocyanin Accumulation in the Leaves of the Purple Sweet Potato ( L.) Cultivars.
Molecules. 2019 Oct 17;24(20):3743. doi: 10.3390/molecules24203743.
4
Isolation of a regulatory gene of anthocyanin biosynthesis in tuberous roots of purple-fleshed sweet potato.
Plant Physiol. 2007 Mar;143(3):1252-68. doi: 10.1104/pp.106.094425. Epub 2007 Jan 5.
6
Expression of the sweetpotato R2R3-type IbMYB1a gene induces anthocyanin accumulation in Arabidopsis.
Physiol Plant. 2013 Jun;148(2):189-99. doi: 10.1111/j.1399-3054.2012.01706.x. Epub 2012 Nov 6.
9
The sweet potato IbMYB1 gene as a potential visible marker for sweet potato intragenic vector system.
Physiol Plant. 2010 Jul 1;139(3):229-40. doi: 10.1111/j.1399-3054.2010.01365.x. Epub 2010 Feb 16.
10
Molecular cloning and characterization of a flavonoid 3'-hydroxylase gene from purple-fleshed sweet potato (Ipomoea batatas).
Mol Biol Rep. 2012 Jan;39(1):295-302. doi: 10.1007/s11033-011-0738-x. Epub 2011 May 21.

引用本文的文献

1
The Light-Regulated Transcription Factor Promotes Flavonoids in .
Int J Mol Sci. 2025 May 30;26(11):5292. doi: 10.3390/ijms26115292.
4
Flavonoids and anthocyanins in seagrasses: implications for climate change adaptation and resilience.
Front Plant Sci. 2025 Jan 28;15:1520474. doi: 10.3389/fpls.2024.1520474. eCollection 2024.
7
A comprehensive overview of omics-based approaches to enhance biotic and abiotic stress tolerance in sweet potato.
Hortic Res. 2024 Jan 12;11(3):uhae014. doi: 10.1093/hr/uhae014. eCollection 2024 Mar.
10
CRISPR/Cas9: an advanced platform for root and tuber crops improvement.
Front Genome Ed. 2024 Jan 19;5:1242510. doi: 10.3389/fgeed.2023.1242510. eCollection 2023.

本文引用的文献

4
A chemical complementation approach reveals genes and interactions of flavonoids with other pathways.
Plant J. 2013 May;74(3):383-97. doi: 10.1111/tpj.12129. Epub 2013 Mar 29.
7
Molecular cloning and characterization of two genes encoding dihydroflavonol-4-reductase from Populus trichocarpa.
PLoS One. 2012;7(2):e30364. doi: 10.1371/journal.pone.0030364. Epub 2012 Feb 17.
8
Influence of abiotic stress signals on secondary metabolites in plants.
Plant Signal Behav. 2011 Nov;6(11):1720-31. doi: 10.4161/psb.6.11.17613. Epub 2011 Nov 1.
10
Anti-obesity and antioxidative effects of purple sweet potato extract in 3T3-L1 adipocytes in vitro.
J Med Food. 2011 Oct;14(10):1097-106. doi: 10.1089/jmf.2010.1450. Epub 2011 Aug 23.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验