Peres A, Andrietti F
Eur Biophys J. 1986;13(4):235-43. doi: 10.1007/BF00260370.
A direct numerical integration method, as modified by Du Fort and Frankel (1953), has been used to solve the partial differential equation system which describes the spread of action potential in a mammalian nerve terminal. Branching of the terminal as well as inhomogeneous distributions of Na+ and K+ voltage-dependent channels (Brigant and Mallart 1982) have been incorporated in the model. Using the channel densities and the kinetic parameters measured in the node of Ranvier, the depolarization in the terminal branches has an amplitude of only 60% of the action potential in the node. Furthermore, the time courses of the calculated membrane currents differ considerably from the ones measured by Brigant and Mallart (1982) and by Konishi and Sears (1984). Increasing the Na+ and K+ channel densities may considerably increase the terminal depolarization and also reproduce qualitatively the current wave-forms observed experimentally. The model can also reproduce some of the effects of pharmacological channel blocks. The simulation allows a new interpretation of the different components of membrane current along the terminal.
一种经杜福特和弗兰克尔(1953年)改进的直接数值积分方法,已被用于求解描述动作电位在哺乳动物神经末梢中传播的偏微分方程组。该模型纳入了神经末梢的分支以及钠通道和钾通道电压依赖性通道的非均匀分布(布里甘特和马拉特,1982年)。利用在郎飞结处测得的通道密度和动力学参数,末梢分支处的去极化幅度仅为结处动作电位的60%。此外,计算得到的膜电流时间进程与布里甘特和马拉特(1982年)以及小西和西尔斯(1984年)测得的结果有很大差异。增加钠通道和钾通道密度可能会显著增加末梢去极化,并且还能定性地重现实验观察到的电流波形。该模型还能重现药理学通道阻断的一些效应。该模拟为沿末梢的膜电流不同成分提供了一种新的解释。