Suppr超能文献

轴突帽依赖性翻译调节突触前p35。

Axonal cap-dependent translation regulates presynaptic p35.

作者信息

Hsiao Kuangfu, Bozdagi Ozlem, Benson Deanna L

机构信息

Department of Neuroscience, Friedman Brain Institute, Icahn School of Medicine and Graduate School of Biomedical Sciences at Mount Sinai, New York, New York, 10029.

出版信息

Dev Neurobiol. 2014 Mar;74(3):351-64. doi: 10.1002/dneu.22154. Epub 2013 Dec 14.

Abstract

Axonal growth cones synthesize proteins during development and in response to injury in adult animals. Proteins locally translated in axons are used to generate appropriate responses to guidance cues, contribute to axon growth, and can serve as retrograde messengers. In addition to growth cones, mRNAs and translational machinery are also found along the lengths of axons where synapses form en passant, but contributions of intra-axonal translation to developing synapses are poorly understood. Here, we engineered a subcellular-targeting translational repressor to inhibit mRNA translation in axons, and we used this strategy to investigate presynaptic contributions of cap-dependent protein translation to developing CNS synapses. Our data show that intra-axonal mRNA translation restrains synaptic vesicle recycling pool size and that one target of this regulation is p35, a Cdk5 activating protein. Cdk5/p35 signaling regulates the size of vesicle recycling pools, p35 levels diminish when cap-dependent translation is repressed, and restoring p35 levels rescues vesicle recycling pools from the effects of spatially targeted translation repression. Together our findings show that intra-axonal synthesis of p35 is required for normal vesicle recycling in developing neurons, and that targeted translational repression provides a novel strategy to investigate extrasomal protein synthesis in neurons.

摘要

轴突生长锥在发育过程中以及成年动物受伤时会合成蛋白质。轴突中局部翻译的蛋白质用于对导向线索产生适当反应、促进轴突生长,并可作为逆行信使。除了生长锥外,在轴突形成过路突触的部位也发现了mRNA和翻译机制,但轴突内翻译对发育中突触的作用尚不清楚。在这里,我们设计了一种亚细胞靶向翻译抑制因子来抑制轴突中的mRNA翻译,并使用该策略研究帽依赖性蛋白质翻译对发育中的中枢神经系统突触的突触前作用。我们的数据表明,轴突内mRNA翻译会限制突触小泡循环池的大小,并且这种调节的一个靶点是p35,一种Cdk5激活蛋白。Cdk5/p35信号传导调节小泡循环池的大小,当帽依赖性翻译受到抑制时,p35水平会降低,而恢复p35水平可使小泡循环池免受空间靶向翻译抑制的影响。我们的研究结果共同表明,轴突内合成p35是发育中神经元正常小泡循环所必需的,并且靶向翻译抑制为研究神经元中胞外蛋白合成提供了一种新策略。

相似文献

1
Axonal cap-dependent translation regulates presynaptic p35.
Dev Neurobiol. 2014 Mar;74(3):351-64. doi: 10.1002/dneu.22154. Epub 2013 Dec 14.
2
Dynamic Partitioning of Synaptic Vesicle Pools by the SNARE-Binding Protein Tomosyn.
J Neurosci. 2016 Nov 2;36(44):11208-11222. doi: 10.1523/JNEUROSCI.1297-16.2016.
4
Identification of axon-enriched microRNAs localized to growth cones of cortical neurons.
Dev Neurobiol. 2014 Mar;74(3):397-406. doi: 10.1002/dneu.22113. Epub 2013 Sep 13.
6
Role of cyclin-dependent kinase 5 and its activator P35 in local axon and growth cone stabilization.
Neuroscience. 2005;134(2):449-65. doi: 10.1016/j.neuroscience.2005.04.020.
8
A functional role for intra-axonal protein synthesis during axonal regeneration from adult sensory neurons.
J Neurosci. 2001 Dec 1;21(23):9291-303. doi: 10.1523/JNEUROSCI.21-23-09291.2001.
9
Regulation of axon guidance by compartmentalized nonsense-mediated mRNA decay.
Cell. 2013 Jun 6;153(6):1252-65. doi: 10.1016/j.cell.2013.04.056.
10
The cyclin-dependent kinase Cdk5 controls multiple aspects of axon patterning in vivo.
Curr Biol. 2000 May 18;10(10):599-602. doi: 10.1016/s0960-9822(00)00487-5.

引用本文的文献

1
Axonal mRNA localization and translation: local events with broad roles.
Cell Mol Life Sci. 2021 Dec;78(23):7379-7395. doi: 10.1007/s00018-021-03995-4. Epub 2021 Oct 26.
2
A Yeast System for Discovering Optogenetic Inhibitors of Eukaryotic Translation Initiation.
ACS Synth Biol. 2019 Apr 19;8(4):744-757. doi: 10.1021/acssynbio.8b00386. Epub 2019 Apr 4.
3
Regulation of neuronal gene expression by local axonal translation.
Curr Genet Med Rep. 2016 Mar;4(1):16-25. doi: 10.1007/s40142-016-0085-2. Epub 2016 Feb 6.
4
Intra-axonal protein synthesis in development and beyond.
Int J Dev Neurosci. 2016 Dec;55:140-149. doi: 10.1016/j.ijdevneu.2016.03.004. Epub 2016 Mar 9.
5
Cyfip1 Regulates Presynaptic Activity during Development.
J Neurosci. 2016 Feb 3;36(5):1564-76. doi: 10.1523/JNEUROSCI.0511-15.2016.
6
Advances in imaging ultrastructure yield new insights into presynaptic biology.
Front Cell Neurosci. 2015 May 22;9:196. doi: 10.3389/fncel.2015.00196. eCollection 2015.
7
Sumoylation of p35 modulates p35/cyclin-dependent kinase (Cdk) 5 complex activity.
Neuromolecular Med. 2015 Mar;17(1):12-23. doi: 10.1007/s12017-014-8336-4. Epub 2014 Nov 13.
9
Remote control of gene function by local translation.
Cell. 2014 Mar 27;157(1):26-40. doi: 10.1016/j.cell.2014.03.005.

本文引用的文献

1
Axonal translation of β-catenin regulates synaptic vesicle dynamics.
J Neurosci. 2013 Mar 27;33(13):5584-9. doi: 10.1523/JNEUROSCI.2944-12.2013.
2
Coupling of NF-protocadherin signaling to axon guidance by cue-induced translation.
Nat Neurosci. 2013 Feb;16(2):166-73. doi: 10.1038/nn.3290. Epub 2013 Jan 6.
3
Autism-related deficits via dysregulated eIF4E-dependent translational control.
Nature. 2013 Jan 17;493(7432):371-7. doi: 10.1038/nature11628. Epub 2012 Nov 21.
4
Subcellular knockout of importin β1 perturbs axonal retrograde signaling.
Neuron. 2012 Jul 26;75(2):294-305. doi: 10.1016/j.neuron.2012.05.033.
5
Insights into the roles of local translation from the axonal transcriptome.
Open Biol. 2012 Jun;2(6):120079. doi: 10.1098/rsob.120079.
6
Differing semaphorin 3A concentrations trigger distinct signaling mechanisms in growth cone collapse.
J Neurosci. 2012 Jun 20;32(25):8554-9. doi: 10.1523/JNEUROSCI.5964-11.2012.
7
Translational homeostasis via the mRNA cap-binding protein, eIF4E.
Mol Cell. 2012 Jun 29;46(6):847-58. doi: 10.1016/j.molcel.2012.04.004. Epub 2012 May 10.
9
Distinct roles of neuroligin-1 and SynCAM1 in synapse formation and function in primary hippocampal neuronal cultures.
Neuroscience. 2012 Jul 26;215:1-16. doi: 10.1016/j.neuroscience.2012.04.047. Epub 2012 Apr 25.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验