文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

兔肿瘤模型中食管癌的局部热疗:磁性支架热疗与磁流体热疗对比

Local hyperthermia for esophageal cancer in a rabbit tumor model: Magnetic stent hyperthermia versus magnetic fluid hyperthermia.

作者信息

Liu Jiayi, Li Ning, Li Li, Li Danye, Liu Kai, Zhao Lingyun, Tang Jintian, Li Liya

机构信息

Department of Oncology, Xiangya Hospital, Central South University, Changsha, Hunan 410008, P.R. China ; Department of Engineering Physics, Institute of Medical Physics and Engineering, Key Laboratory of Particle and Radiation Imaging, Ministry of Education, Tsinghua University, Beijing 100084, P.R. China.

出版信息

Oncol Lett. 2013 Dec;6(6):1550-1558. doi: 10.3892/ol.2013.1618. Epub 2013 Oct 11.


DOI:10.3892/ol.2013.1618
PMID:24260045
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC3833863/
Abstract

Magnetic-mediated hyperthermia (MMH) is a promising local thermotherapy approach for cancer treatment. The present study investigated the feasibility and effectiveness of MMH in esophageal cancer using a rabbit tumor model. The therapeutic effect of two hyperthermia approaches, magnetic stent hyperthermia (MSH), in which heat is induced by the clinical stent that is placed inside the esophagus, and magnetic fluid hyperthermia (MFH), where magnetic nanoparticles are applied as the agent, was systematically evaluated. A rabbit esophageal tumor model was established by injecting VX2 carcinoma cells into the esophageal submucosa. The esophageal stent was deployed perorally into the tumor segment of the esophagus. For the MFH, magnetic nanoparticles (MNPs) were administered to the rabbits by intratumoral injection. The rabbits were exposed under a benchtop applicator using an alternative magnetic field (AMF) with 300 kHz frequency for the hyperthermia treatment. The results demonstrated that esophageal stents and MNPs had ideal inductive heating properties upon exposure under an AMF of 300 kHz. MSH, using a thermal dose of 46°C with a 10-min treatment time, demonstrated antitumor effects on the rabbit esophageal cancer. However, the rabbit esophageal wall is not heat-resistant. Therefore, a higher temperature or longer treatment time may lead to necrosis of the rabbit esophagus. MFH has a significant antitumor effect by confining the heat within the tumor site without damaging the adjacent normal tissues. The present study indicates that the two hyperthermia procedures have therapeutic effects on esophageal cancer, and that MFH may be more specific than MSH in terms of temperature control during the treatment.

摘要

磁介导热疗(MMH)是一种很有前景的用于癌症治疗的局部热疗方法。本研究使用兔肿瘤模型探究了MMH在食管癌治疗中的可行性和有效性。系统评估了两种热疗方法的治疗效果,即磁支架热疗(MSH),通过置于食管内的临床支架诱导产热;以及磁流体热疗(MFH),使用磁性纳米颗粒作为介质。通过将VX2癌细胞注射到食管黏膜下层建立兔食管肿瘤模型。经口将食管支架置入食管肿瘤段。对于MFH,通过瘤内注射给兔施用磁性纳米颗粒(MNPs)。使用频率为300 kHz的交变磁场(AMF)在台式施加器下对兔进行热疗治疗。结果表明,食管支架和MNPs在300 kHz的AMF照射下具有理想的感应加热特性。MSH采用46°C的热剂量和10分钟的治疗时间,对兔食管癌显示出抗肿瘤作用。然而,兔食管壁不耐热。因此,更高的温度或更长的治疗时间可能导致兔食管坏死。MFH通过将热量限制在肿瘤部位而不损伤相邻正常组织,具有显著的抗肿瘤作用。本研究表明,这两种热疗方法对食管癌均有治疗效果,并且在治疗过程中MFH在温度控制方面可能比MSH更具特异性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/a90f30c9a063/OL-06-06-1550-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/e79c941f0720/OL-06-06-1550-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/589bbf46c117/OL-06-06-1550-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/d2c0a6f319e2/OL-06-06-1550-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/50de76cf2c71/OL-06-06-1550-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/90454510b090/OL-06-06-1550-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/679b3bcfaedc/OL-06-06-1550-g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/ceb40fa1140a/OL-06-06-1550-g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/d9116b1f6276/OL-06-06-1550-g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/62a949b627ab/OL-06-06-1550-g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/1ac47dacc1f0/OL-06-06-1550-g09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/116a4d150402/OL-06-06-1550-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/f820c69e4ca0/OL-06-06-1550-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/a90f30c9a063/OL-06-06-1550-g12.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/e79c941f0720/OL-06-06-1550-g00.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/589bbf46c117/OL-06-06-1550-g01.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/d2c0a6f319e2/OL-06-06-1550-g02.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/50de76cf2c71/OL-06-06-1550-g03.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/90454510b090/OL-06-06-1550-g04.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/679b3bcfaedc/OL-06-06-1550-g05.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/ceb40fa1140a/OL-06-06-1550-g06.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/d9116b1f6276/OL-06-06-1550-g07.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/62a949b627ab/OL-06-06-1550-g08.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/1ac47dacc1f0/OL-06-06-1550-g09.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/116a4d150402/OL-06-06-1550-g10.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/f820c69e4ca0/OL-06-06-1550-g11.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7127/3833863/a90f30c9a063/OL-06-06-1550-g12.jpg

相似文献

[1]
Local hyperthermia for esophageal cancer in a rabbit tumor model: Magnetic stent hyperthermia versus magnetic fluid hyperthermia.

Oncol Lett. 2013-12

[2]
Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line.

Oncol Rep. 2011-12-21

[3]
study on the feasibility of magnetic stent hyperthermia for the treatment of cardiovascular restenosis.

Exp Ther Med. 2013-8

[4]
In vitro investigation on the magnetic thermochemotherapy mediated by magnetic nanoparticles combined with methotrexate for breast cancer treatment.

J Nanosci Nanotechnol. 2013-2

[5]
Magnetic fluid hyperthermia (MFH)reduces prostate cancer growth in the orthotopic Dunning R3327 rat model.

Prostate. 2005-8-1

[6]
Local hyperthermia mediated by gold nanoparticle-integrated silicone-covered stent: feasibility and tissue response in a rat esophageal model.

Eur Radiol Exp. 2024-4-3

[7]
Optimization Study on Specific Loss Power in Superparamagnetic Hyperthermia with Magnetite Nanoparticles for High Efficiency in Alternative Cancer Therapy.

Nanomaterials (Basel). 2020-12-26

[8]
Simultaneous hyperthermia-chemotherapy effect by arterial injection of Fe(Salen) for femur tumor.

Cancer Sci. 2018-12-6

[9]
Enhancing cancer therapeutics using size-optimized magnetic fluid hyperthermia.

J Appl Phys. 2012-4-1

[10]
Effect of Magnetic Fluid Hyperthermia on Implanted Melanoma in Mouse Models.

Iran J Med Sci. 2016-7

引用本文的文献

[1]
Cottontail Rabbit Papillomavirus (CRPV) Related Animal Models for Head and Neck Cancer Research: A Comprehensive Review of the Literature.

Viruses. 2024-10-31

[2]
Nanomedicine and Hyperthermia for the Treatment of Gastrointestinal Cancer: A Systematic Review.

Pharmaceutics. 2023-7-15

[3]
Magnetic aerosol drug targeting in lung cancer therapy using permanent magnet.

Drug Deliv. 2019-12

[4]
ROS-induced HepG2 cell death from hyperthermia using magnetic hydroxyapatite nanoparticles.

Nanotechnology. 2018-6-19

[5]
Functionalized Non-vascular Nitinol Stent via Electropolymerized Polydopamine Thin Film Coating Loaded with Bortezomib Adjunct to Hyperthermia Therapy.

Sci Rep. 2017-8-25

[6]
Evaluation of nano-magnetic fluid on malignant glioma cells.

Oncol Lett. 2017-2

[7]
Laboratory animal models for esophageal cancer.

Vet World. 2016-11

[8]
Regional thermochemotherapy versus hepatic arterial infusion chemotherapy for palliative treatment of advanced hilar cholangiocarcinoma: a retrospective controlled study.

Eur Radiol. 2016-10

[9]
Percutaneous ultrasound guided implantation of VX2 for creation of a rabbit hepatic tumor model.

PLoS One. 2015-4-8

本文引用的文献

[1]
Therapeutic nanoparticles in clinics and under clinical evaluation.

Nanomedicine (Lond). 2013-3

[2]
Induction heating studies of dextran coated MgFe2O4 nanoparticles for magnetic hyperthermia.

Dalton Trans. 2013-1-28

[3]
Multimodality treatment of cancer with herceptin conjugated, thermomagnetic iron oxides and docetaxel loaded nanoparticles of biodegradable polymers.

Biomaterials. 2012-7-17

[4]
Trends in esophageal cancer mortality in China during 1987-2009: age, period and birth cohort analyzes.

Cancer Epidemiol. 2012-1-9

[5]
Magnetic stent hyperthermia for esophageal cancer: an in vitro investigation in the ECA-109 cell line.

Oncol Rep. 2011-12-21

[6]
Anticancer effect and feasibility study of hyperthermia treatment of pancreatic cancer using magnetic nanoparticles.

Oncol Rep. 2011-11-30

[7]
Tumor local chemohyperthermia using docetaxel-embedded magnetoliposomes: Interaction of chemotherapy and hyperthermia.

J Gastroenterol Hepatol. 2012-2

[8]
Hyperthermia improves therapeutic efficacy of doxorubicin carried by mesoporous silica nanocontainers in human lung cancer cells.

Int J Hyperthermia. 2011

[9]
Application of hyperthermia for cancer treatment: recent patents review.

Recent Pat Anticancer Drug Discov. 2012-1

[10]
Magnetic fluid hyperthermia: focus on superparamagnetic iron oxide nanoparticles.

Adv Colloid Interface Sci. 2011-4-30

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索