Suppr超能文献

利用局部轻度热疗实现肿瘤血管通透性增加以改善大分子转运。

Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport.

作者信息

Kirui Dickson K, Koay Eugene J, Guo Xiaojing, Cristini Vittorio, Shen Haifa, Ferrari Mauro

机构信息

Houston Methodist Research Institute, Houston, TX, USA.

Houston Methodist Research Institute, Houston, TX, USA; MD Anderson Cancer Center, Houston, TX, USA.

出版信息

Nanomedicine. 2014 Oct;10(7):1487-96. doi: 10.1016/j.nano.2013.11.001. Epub 2013 Nov 18.

Abstract

The abnormal tumor vasculature presents a major challenge to the adequate delivery of chemotherapeutics, often limiting efficacy. We developed a nanoparticle-based technique to deliver localized mild hyperthermia (MHT) used to transiently alter tumor vascular transport properties and enhance transport of macromolecules into tumor interstitium. The strategy involved administering and localizing accumulation of stealth gold nanorods (GNRs, 103 μg of GNRs/g of tumor), and irradiating tumor with a low-photon laser flux (1 W/cm(2)) to generate MHT. The treatment increased vascular permeability within 24 h after treatment, allowing enhanced transport of macromolecules up to 54 nm in size. A mathematical model is used to describe changes in tumor mass transport properties where the rate of macromolecular exchange between interstitial and vascular region (R) and maximum dye enhancement (Ymax) of 23-nm dextran dye is analytically solved. During enhanced permeability, R increased by 200% while Ymax increased by 30% relative to untreated group in pancreatic CAPAN-1 tumors. MHT treatment also enhanced transport of larger dextran dye (54 nm) as assessed by intravital microscopy, without causing occlusive cellular damage. Enhanced vascular transport was prolonged for up to 24 h after treatment, but reversible with transport parameters returning to basal levels after 36 h. This study indicates that localized mild hyperthermia treatment opens a transient time-window with which to enable and augment macromolecule transport and potentially improve therapeutic efficacy. From the clinical editor: In this study, local intra-tumor mild hyperthermia is induced using a nanoparticle-based approach utilizing stealth gold nanorods and irradiating the tumor with low-photon laser flux, resulting in locally increased vascular permeability enabling enhanced delivery of therapeutics, including macromolecules up to 54 nm in size. Similar approaches would be very helpful in addressing treatment-resistant malignancies in clinical practice.

摘要

异常的肿瘤血管系统对化疗药物的充分递送构成了重大挑战,常常限制疗效。我们开发了一种基于纳米颗粒的技术来递送局部温和热疗(MHT),用于短暂改变肿瘤血管的转运特性,并增强大分子向肿瘤间质的转运。该策略包括给予并使隐形金纳米棒(GNRs,每克肿瘤103μg GNRs)局部蓄积,并用低光子激光通量(1W/cm²)照射肿瘤以产生MHT。治疗后24小时内,该治疗增加了血管通透性,使尺寸达54nm的大分子转运增强。使用一个数学模型来描述肿瘤质量转运特性的变化,其中解析求解了间质和血管区域之间大分子交换速率(R)以及23nm葡聚糖染料的最大染料增强(Ymax)。在通透性增强期间,相对于胰腺CAPAN - 1肿瘤的未治疗组,R增加了200%,而Ymax增加了30%。通过活体显微镜评估,MHT治疗还增强了更大尺寸葡聚糖染料(54nm)的转运,且未造成闭塞性细胞损伤。治疗后增强的血管转运持续长达24小时,但具有可逆性,36小时后转运参数恢复至基础水平。这项研究表明,局部温和热疗打开了一个短暂的时间窗口,借此能够实现并增强大分子转运,并有可能提高治疗效果。临床编辑评论:在本研究中,使用基于纳米颗粒的方法诱导局部肿瘤内温和热疗,该方法利用隐形金纳米棒并用低光子激光通量照射肿瘤,导致局部血管通透性增加,从而能够增强包括尺寸达54nm的大分子在内的治疗药物的递送。类似的方法在临床实践中应对难治性恶性肿瘤方面将非常有帮助。

相似文献

1
Tumor vascular permeabilization using localized mild hyperthermia to improve macromolecule transport.
Nanomedicine. 2014 Oct;10(7):1487-96. doi: 10.1016/j.nano.2013.11.001. Epub 2013 Nov 18.
2
Transient mild hyperthermia induces E-selectin mediated localization of mesoporous silicon vectors in solid tumors.
PLoS One. 2014 Feb 18;9(2):e86489. doi: 10.1371/journal.pone.0086489. eCollection 2014.
3
Mild hyperthermia enhances transport of liposomal gemcitabine and improves in vivo therapeutic response.
Adv Healthc Mater. 2015 May;4(7):1092-103. doi: 10.1002/adhm.201400738. Epub 2015 Feb 26.
4
Improved intratumoral nanoparticle extravasation and penetration by mild hyperthermia.
J Control Release. 2013 Apr 28;167(2):130-7. doi: 10.1016/j.jconrel.2013.01.026. Epub 2013 Feb 4.
6
Enhancing tumor endothelial permeability using MUC18-targeted gold nanorods and mild hyperthermia.
J Colloid Interface Sci. 2024 Dec 15;676:101-109. doi: 10.1016/j.jcis.2024.07.047. Epub 2024 Jul 14.
8
Synergistic effects of cisplatin chemotherapy and gold nanorod-mediated hyperthermia on ovarian cancer cells and tumors.
Nanomedicine (Lond). 2014 Sep;9(13):1939-55. doi: 10.2217/nnm.13.209. Epub 2014 Feb 5.
10
Plasmonic photothermal therapy: Approaches to advanced strategy.
Lasers Surg Med. 2018 Dec;50(10):1025-1033. doi: 10.1002/lsm.23001. Epub 2018 Jul 19.

引用本文的文献

2
Review of the Delivery Kinetics of Thermosensitive Liposomes.
Cancers (Basel). 2023 Jan 7;15(2):398. doi: 10.3390/cancers15020398.
3
Photo/thermo-responsive and size-switchable nanoparticles for chemo-photothermal therapy against orthotopic breast cancer.
Nanoscale Adv. 2019 Dec 17;2(1):210-213. doi: 10.1039/c9na00652d. eCollection 2020 Jan 22.
4
Locoregional therapies and their effects on the tumoral microenvironment of pancreatic ductal adenocarcinoma.
World J Gastroenterol. 2022 Apr 7;28(13):1288-1303. doi: 10.3748/wjg.v28.i13.1288.
5
A light-driven dual-nanotransformer with deep tumor penetration for efficient chemo-immunotherapy.
Theranostics. 2022 Jan 24;12(4):1756-1768. doi: 10.7150/thno.68756. eCollection 2022.
6
Opportunities and Challenges of Nanoparticles in Digestive Tumours as Anti-Angiogenic Therapies.
Front Oncol. 2022 Jan 10;11:789330. doi: 10.3389/fonc.2021.789330. eCollection 2021.
7
External Basic Hyperthermia Devices for Preclinical Studies in Small Animals.
Cancers (Basel). 2021 Sep 15;13(18):4628. doi: 10.3390/cancers13184628.
8
Deployable ultrasound applicators for endoluminal delivery of volumetric hyperthermia.
Int J Hyperthermia. 2021 Aug 10;38(1):1188-1204. doi: 10.1080/02656736.2021.1936216.
9
Recent Progress in the Synergistic Combination of Nanoparticle-Mediated Hyperthermia and Immunotherapy for Treatment of Cancer.
Adv Healthc Mater. 2021 Jan;10(2):e2001415. doi: 10.1002/adhm.202001415. Epub 2020 Nov 25.
10
Photothermal therapy technology of metastatic colorectal cancer.
Am J Transl Res. 2020 Jul 15;12(7):3089-3115. eCollection 2020.

本文引用的文献

1
Enhanced antitumor efficacy of gemcitabine-loaded temperature-sensitive liposome by hyperthermia in tumor-bearing mice.
Drug Dev Ind Pharm. 2014 Apr;40(4):470-6. doi: 10.3109/03639045.2013.768631. Epub 2013 Apr 24.
2
Antitumor effect and immune response induced by local hyperthermia in B16 murine melanoma: Effect of thermal dose.
Oncol Lett. 2012 Oct;4(4):711-718. doi: 10.3892/ol.2012.804. Epub 2012 Jul 16.
3
Stimulus-responsive nanopreparations for tumor targeting.
Integr Biol (Camb). 2013 Jan;5(1):96-107. doi: 10.1039/c2ib20135f.
4
Effective photothermal chemotherapy using doxorubicin-loaded gold nanospheres that target EphB4 receptors in tumors.
Cancer Res. 2012 Sep 15;72(18):4777-86. doi: 10.1158/0008-5472.CAN-12-1003. Epub 2012 Aug 3.
5
Hyperthermia-triggered drug delivery from temperature-sensitive liposomes using MRI-guided high intensity focused ultrasound.
J Control Release. 2012 Jul 20;161(2):317-27. doi: 10.1016/j.jconrel.2012.04.041. Epub 2012 May 5.
6
8
Delivery of molecular and nanoscale medicine to tumors: transport barriers and strategies.
Annu Rev Chem Biomol Eng. 2011;2:281-98. doi: 10.1146/annurev-chembioeng-061010-114300.
9
Improving interstitial transport of macromolecules through reduction in cell volume fraction in tumor tissues.
Nanomedicine. 2012 Oct;8(7):1088-95. doi: 10.1016/j.nano.2011.12.009. Epub 2012 Jan 14.
10
Rapid tumoritropic accumulation of systemically injected plateloid particles and their biodistribution.
J Control Release. 2012 Feb 28;158(1):148-55. doi: 10.1016/j.jconrel.2011.10.021. Epub 2011 Oct 26.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验