Suppr超能文献

一支新的模式大军:用于研究脊椎动物演化发育生物学基因组学的新兴鱼类模式生物

A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo.

作者信息

Braasch Ingo, Peterson Samuel M, Desvignes Thomas, McCluskey Braedan M, Batzel Peter, Postlethwait John H

机构信息

Institute of Neuroscience, University of Oregon, Eugene, Oregon.

出版信息

J Exp Zool B Mol Dev Evol. 2015 Jun;324(4):316-41. doi: 10.1002/jez.b.22589. Epub 2014 Aug 11.

Abstract

Many fields of biology--including vertebrate Evo-Devo research--are facing an explosion of genomic and transcriptomic sequence information and a multitude of fish species are now swimming in this "genomic tsunami." Here, we first give an overview of recent developments in sequencing fish genomes and transcriptomes that identify properties of fish genomes requiring particular attention and propose strategies to overcome common challenges in fish genomics. We suggest that the generation of chromosome-level genome assemblies--for which we introduce the term "chromonome"--should be a key component of genomic investigations in fish because they enable large-scale conserved synteny analyses that inform orthology detection, a process critical for connectivity of genomes. Orthology calls in vertebrates, especially in teleost fish, are complicated by divergent evolution of gene repertoires and functions following two rounds of genome duplication in the ancestor of vertebrates and a third round at the base of teleost fish. Second, using examples of spotted gar, basal teleosts, zebrafish-related cyprinids, cavefish, livebearers, icefish, and lobefin fish, we illustrate how next generation sequencing technologies liberate emerging fish systems from genomic ignorance and transform them into a new model army to answer longstanding questions on the genomic and developmental basis of their biodiversity. Finally, we discuss recent progress in the genetic toolbox for the major fish models for functional analysis, zebrafish, and medaka, that can be transferred to many other fish species to study in vivo the functional effect of evolutionary genomic change as Evo-Devo research enters the postgenomic era.

摘要

生物学的许多领域——包括脊椎动物的演化发育生物学(Evo-Devo)研究——都面临着基因组和转录组序列信息的爆炸式增长,众多鱼类正游弋在这场“基因组海啸”之中。在此,我们首先概述鱼类基因组和转录组测序的最新进展,这些进展揭示了鱼类基因组中需要特别关注的特性,并提出了克服鱼类基因组学中常见挑战的策略。我们认为,生成染色体水平的基因组组装——我们为此引入了“染色体组”这一术语——应该是鱼类基因组研究的关键组成部分,因为它们能够进行大规模的保守共线性分析,从而为直系同源性检测提供信息,而直系同源性检测是基因组连通性的关键过程。在脊椎动物,尤其是硬骨鱼类中,直系同源性的判定因脊椎动物祖先两轮基因组复制以及硬骨鱼类基部的第三轮基因组复制后基因库和功能的趋异进化而变得复杂。其次,以雀鳝、基底硬骨鱼类、斑马鱼相关鲤科鱼类、洞穴鱼、胎生鱼类、冰鱼和肉鳍鱼为例,我们说明了新一代测序技术如何将新兴的鱼类系统从基因组未知状态中解放出来,并将它们转变为一支新的模型大军,以回答有关其生物多样性的基因组和发育基础的长期问题。最后,我们讨论了用于功能分析的主要鱼类模型斑马鱼和青鳉的遗传工具箱的最新进展,随着演化发育生物学研究进入后基因组时代,这些进展可转移到许多其他鱼类物种,用于体内研究进化基因组变化的功能效应。

相似文献

1
A new model army: Emerging fish models to study the genomics of vertebrate Evo-Devo.
J Exp Zool B Mol Dev Evol. 2015 Jun;324(4):316-41. doi: 10.1002/jez.b.22589. Epub 2014 Aug 11.
4
Connectivity of vertebrate genomes: Paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods.
Comp Biochem Physiol C Toxicol Pharmacol. 2014 Jun;163:24-36. doi: 10.1016/j.cbpc.2014.01.005. Epub 2014 Jan 30.
5
Whole-genome duplication and the functional diversification of teleost fish hemoglobins.
Mol Biol Evol. 2013 Jan;30(1):140-53. doi: 10.1093/molbev/mss212. Epub 2012 Sep 4.
6
The Molecular Evolution of Circadian Clock Genes in Spotted Gar ().
Genes (Basel). 2019 Aug 17;10(8):622. doi: 10.3390/genes10080622.
9
Advances in genomics of bony fish.
Brief Funct Genomics. 2014 Mar;13(2):144-56. doi: 10.1093/bfgp/elt046. Epub 2013 Nov 29.
10
OHNOLOGS v2: a comprehensive resource for the genes retained from whole genome duplication in vertebrates.
Nucleic Acids Res. 2020 Jan 8;48(D1):D724-D730. doi: 10.1093/nar/gkz909.

引用本文的文献

2
The genome sequence of the Dracula fish, (Britz, Conway & Rüber, 2009).
Wellcome Open Res. 2024 Apr 12;9:194. doi: 10.12688/wellcomeopenres.21117.1. eCollection 2024.
3
Post-testicular sperm maturation in ancient holostean species.
Sci Rep. 2023 Nov 13;13(1):19746. doi: 10.1038/s41598-023-46900-8.
4
Maze design: size and number of choices impact fish performance in cognitive assays.
J Fish Biol. 2023 Nov;103(5):974-984. doi: 10.1111/jfb.15493. Epub 2023 Jul 14.
7
Conserved and diverged asymmetric gene expression in the brain of teleosts.
Front Cell Dev Biol. 2022 Sep 21;10:1005776. doi: 10.3389/fcell.2022.1005776. eCollection 2022.
8
Platyfish bypass the constraint of the caudal fin ventral identity in teleosts.
Dev Dyn. 2022 Nov;251(11):1862-1879. doi: 10.1002/dvdy.518. Epub 2022 Jul 22.
9
The bowfin genome illuminates the developmental evolution of ray-finned fishes.
Nat Genet. 2021 Sep;53(9):1373-1384. doi: 10.1038/s41588-021-00914-y. Epub 2021 Aug 30.

本文引用的文献

1
Expanding the annotation of zebrafish microRNAs based on small RNA sequencing.
Gene. 2014 Aug 10;546(2):386-9. doi: 10.1016/j.gene.2014.05.036. Epub 2014 May 15.
3
A RAD-tag genetic map for the platyfish (Xiphophorus maculatus) reveals mechanisms of karyotype evolution among teleost fish.
Genetics. 2014 Jun;197(2):625-41. doi: 10.1534/genetics.114.164293. Epub 2014 Apr 2.
4
Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci.
Genetics. 2014 Apr;196(4):1303-19. doi: 10.1534/genetics.114.161661. Epub 2014 Feb 4.
5
Epigenetic modification and inheritance in sexual reversal of fish.
Genome Res. 2014 Apr;24(4):604-15. doi: 10.1101/gr.162172.113. Epub 2014 Feb 2.
7
Connectivity of vertebrate genomes: Paired-related homeobox (Prrx) genes in spotted gar, basal teleosts, and tetrapods.
Comp Biochem Physiol C Toxicol Pharmacol. 2014 Jun;163:24-36. doi: 10.1016/j.cbpc.2014.01.005. Epub 2014 Jan 30.
8
A tetrapod-like repertoire of innate immune receptors and effectors for coelacanths.
J Exp Zool B Mol Dev Evol. 2014 Sep;322(6):415-37. doi: 10.1002/jez.b.22559. Epub 2014 Jan 30.
9
Conservation and divergence of regulatory strategies at Hox Loci and the origin of tetrapod digits.
PLoS Biol. 2014 Jan;12(1):e1001773. doi: 10.1371/journal.pbio.1001773. Epub 2014 Jan 21.
10
Genome complexity in the coelacanth is reflected in its adaptive immune system.
J Exp Zool B Mol Dev Evol. 2014 Sep;322(6):438-63. doi: 10.1002/jez.b.22558. Epub 2014 Jan 24.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验