Suppr超能文献

增强的非磷酸化抑制蛋白与基因治疗

Enhanced phosphorylation-independent arrestins and gene therapy.

作者信息

Gurevich Vsevolod V, Song Xiufeng, Vishnivetskiy Sergey A, Gurevich Eugenia V

机构信息

Department of Pharmacology, Vanderbilt University, 2200 Pierce Avenue, Nashville, TN, 37232, USA,

出版信息

Handb Exp Pharmacol. 2014;219:133-52. doi: 10.1007/978-3-642-41199-1_7.

Abstract

A variety of heritable and acquired disorders is associated with excessive signaling by mutant or overstimulated GPCRs. Since any conceivable treatment of diseases caused by gain-of-function mutations requires gene transfer, one possible approach is functional compensation. Several structurally distinct forms of enhanced arrestins that bind phosphorylated and even non-phosphorylated active GPCRs with much higher affinity than parental wild-type proteins have the ability to dampen the signaling by hyperactive GPCR, pushing the balance closer to normal. In vivo this approach was so far tested only in rod photoreceptors deficient in rhodopsin phosphorylation, where enhanced arrestin improved the morphology and light sensitivity of rods, prolonged their survival, and accelerated photoresponse recovery. Considering that rods harbor the fastest, as well as the most demanding and sensitive GPCR-driven signaling cascade, even partial success of functional compensation of defect in rhodopsin phosphorylation by enhanced arrestin demonstrates the feasibility of this strategy and its therapeutic potential.

摘要

多种遗传性和获得性疾病与突变或过度刺激的G蛋白偶联受体(GPCR)的过度信号传导有关。由于对功能获得性突变引起的疾病的任何可想象的治疗都需要基因转移,一种可能的方法是功能补偿。几种结构上不同形式的增强型抑制蛋白,它们与磷酸化甚至非磷酸化的活性GPCR结合的亲和力比亲本野生型蛋白高得多,具有抑制过度活跃的GPCR信号传导的能力,使平衡更接近正常。到目前为止,这种方法仅在视紫红质磷酸化缺陷的视杆光感受器中进行了体内测试,在那里增强型抑制蛋白改善了视杆的形态和光敏感性,延长了它们的存活时间,并加速了光反应恢复。鉴于视杆具有最快、要求最高且最敏感的GPCR驱动的信号级联反应,增强型抑制蛋白对视紫红质磷酸化缺陷进行功能补偿即使只是部分成功,也证明了该策略的可行性及其治疗潜力。

相似文献

1
Enhanced phosphorylation-independent arrestins and gene therapy.
Handb Exp Pharmacol. 2014;219:133-52. doi: 10.1007/978-3-642-41199-1_7.
2
Targeting individual GPCRs with redesigned nonvisual arrestins.
Handb Exp Pharmacol. 2014;219:153-70. doi: 10.1007/978-3-642-41199-1_8.
3
Enhanced arrestin facilitates recovery and protects rods lacking rhodopsin phosphorylation.
Curr Biol. 2009 Apr 28;19(8):700-5. doi: 10.1016/j.cub.2009.02.065. Epub 2009 Apr 9.
4
Functional comparisons of visual arrestins in rod photoreceptors of transgenic mice.
Invest Ophthalmol Vis Sci. 2007 May;48(5):1968-75. doi: 10.1167/iovs.06-1287.
5
The Role of Arrestin-1 Middle Loop in Rhodopsin Binding.
Int J Mol Sci. 2022 Nov 11;23(22):13887. doi: 10.3390/ijms232213887.
6
Role of receptor-attached phosphates in binding of visual and non-visual arrestins to G protein-coupled receptors.
J Biol Chem. 2012 Mar 16;287(12):9028-40. doi: 10.1074/jbc.M111.311803. Epub 2012 Jan 24.
7
Effect of Rhodopsin Phosphorylation on Dark Adaptation in Mouse Rods.
J Neurosci. 2016 Jun 29;36(26):6973-87. doi: 10.1523/JNEUROSCI.3544-15.2016.
8
Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina.
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9463-8. doi: 10.1073/pnas.1301126110. Epub 2013 May 20.
9
The physiological roles of arrestin-1 in rod photoreceptor cells.
Handb Exp Pharmacol. 2014;219:85-99. doi: 10.1007/978-3-642-41199-1_4.
10
Custom-designed proteins as novel therapeutic tools? The case of arrestins.
Expert Rev Mol Med. 2010 Apr 23;12:e13. doi: 10.1017/S1462399410001444.

引用本文的文献

1
The LPA Receptor: Regulation and Activation of Signaling Pathways.
Int J Mol Sci. 2021 Jun 23;22(13):6704. doi: 10.3390/ijms22136704.
2
Many faces of the GPCR-arrestin interaction.
Arch Pharm Res. 2020 Sep;43(9):890-899. doi: 10.1007/s12272-020-01263-w. Epub 2020 Aug 14.
3
Uncovering missing pieces: duplication and deletion history of arrestins in deuterostomes.
BMC Evol Biol. 2017 Jul 6;17(1):163. doi: 10.1186/s12862-017-1001-4.
4
The Diverse Roles of Arrestin Scaffolds in G Protein-Coupled Receptor Signaling.
Pharmacol Rev. 2017 Jul;69(3):256-297. doi: 10.1124/pr.116.013367.

本文引用的文献

1
Rapid degeneration of rod photoreceptors expressing self-association-deficient arrestin-1 mutant.
Cell Signal. 2013 Dec;25(12):2613-24. doi: 10.1016/j.cellsig.2013.08.022. Epub 2013 Sep 3.
2
Constitutively active rhodopsin mutants causing night blindness are effectively phosphorylated by GRKs but differ in arrestin-1 binding.
Cell Signal. 2013 Nov;25(11):2155-62. doi: 10.1016/j.cellsig.2013.07.009. Epub 2013 Jul 17.
3
Visual arrestin interaction with clathrin adaptor AP-2 regulates photoreceptor survival in the vertebrate retina.
Proc Natl Acad Sci U S A. 2013 Jun 4;110(23):9463-8. doi: 10.1073/pnas.1301126110. Epub 2013 May 20.
4
Structure of active β-arrestin-1 bound to a G-protein-coupled receptor phosphopeptide.
Nature. 2013 May 2;497(7447):137-41. doi: 10.1038/nature12120. Epub 2013 Apr 21.
5
Crystal structure of pre-activated arrestin p44.
Nature. 2013 May 2;497(7447):142-6. doi: 10.1038/nature12133. Epub 2013 Apr 21.
6
Insights into congenital stationary night blindness based on the structure of G90D rhodopsin.
EMBO Rep. 2013 Jun;14(6):520-6. doi: 10.1038/embor.2013.44. Epub 2013 Apr 12.
7
Critical role of the central 139-loop in stability and binding selectivity of arrestin-1.
J Biol Chem. 2013 Apr 26;288(17):11741-50. doi: 10.1074/jbc.M113.450031. Epub 2013 Mar 8.
8
Involvement of distinct arrestin-1 elements in binding to different functional forms of rhodopsin.
Proc Natl Acad Sci U S A. 2013 Jan 15;110(3):942-7. doi: 10.1073/pnas.1215176110. Epub 2012 Dec 31.
9
Engineering visual arrestin-1 with special functional characteristics.
J Biol Chem. 2013 Feb 1;288(5):3394-405. doi: 10.1074/jbc.M112.445437. Epub 2012 Dec 17.
10
Conformation of receptor-bound visual arrestin.
Proc Natl Acad Sci U S A. 2012 Nov 6;109(45):18407-12. doi: 10.1073/pnas.1216304109. Epub 2012 Oct 22.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验