Suppr超能文献

细胞挤压作为一种强大的微流控细胞内递送平台。

Cell squeezing as a robust, microfluidic intracellular delivery platform.

作者信息

Sharei Armon, Cho Nahyun, Mao Shirley, Jackson Emily, Poceviciute Roberta, Adamo Andrea, Zoldan Janet, Langer Robert, Jensen Klavs F

机构信息

Department of Chemical Engineering, Massachusetts Institute of Technology.

出版信息

J Vis Exp. 2013 Nov 7(81):e50980. doi: 10.3791/50980.

Abstract

Rapid mechanical deformation of cells has emerged as a promising, vector-free method for intracellular delivery of macromolecules and nanomaterials. This technology has shown potential in addressing previously challenging applications; including, delivery to primary immune cells, cell reprogramming, carbon nanotube, and quantum dot delivery. This vector-free microfluidic platform relies on mechanical disruption of the cell membrane to facilitate cytosolic delivery of the target material. Herein, we describe the detailed method of use for these microfluidic devices including, device assembly, cell preparation, and system operation. This delivery approach requires a brief optimization of device type and operating conditions for previously unreported applications. The provided instructions are generalizable to most cell types and delivery materials as this system does not require specialized buffers or chemical modification/conjugation steps. This work also provides recommendations on how to improve device performance and trouble-shoot potential issues related to clogging, low delivery efficiencies, and cell viability.

摘要

细胞的快速机械变形已成为一种很有前景的、无载体的细胞内递送大分子和纳米材料的方法。这项技术在解决以前具有挑战性的应用方面显示出潜力;包括递送至原代免疫细胞、细胞重编程、碳纳米管和量子点递送。这个无载体微流控平台依靠细胞膜的机械破坏来促进目标材料的胞质递送。在此,我们描述了这些微流控设备的详细使用方法,包括设备组装、细胞制备和系统操作。这种递送方法对于以前未报道的应用需要对设备类型和操作条件进行简要优化。所提供的说明适用于大多数细胞类型和递送材料,因为该系统不需要特殊缓冲液或化学修饰/偶联步骤。这项工作还提供了关于如何提高设备性能以及解决与堵塞、低递送效率和细胞活力相关的潜在问题的建议。

相似文献

1
Cell squeezing as a robust, microfluidic intracellular delivery platform.
J Vis Exp. 2013 Nov 7(81):e50980. doi: 10.3791/50980.
2
Flow-through comb electroporation device for delivery of macromolecules.
Anal Chem. 2013 Feb 5;85(3):1637-41. doi: 10.1021/ac302887a. Epub 2013 Jan 14.
4
A vector-free microfluidic platform for intracellular delivery.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2082-7. doi: 10.1073/pnas.1218705110. Epub 2013 Jan 22.
5
Latest developments in microfluidic cell biology and analysis systems.
Anal Chem. 2010 Jun 15;82(12):4848-64. doi: 10.1021/ac1009707.
6
A microfluidic technique to probe cell deformability.
J Vis Exp. 2014 Sep 3(91):e51474. doi: 10.3791/51474.
7
Microfluidic Strategies for Understanding the Mechanics of Cells and Cell-Mimetic Systems.
Annu Rev Chem Biomol Eng. 2015;6:293-317. doi: 10.1146/annurev-chembioeng-061114-123407. Epub 2015 Jul 2.
8
Microfluidic chambers using fluid walls for cell biology.
Proc Natl Acad Sci U S A. 2018 Jun 26;115(26):E5926-E5933. doi: 10.1073/pnas.1805449115. Epub 2018 Jun 12.
9
Standing surface acoustic wave (SSAW)-based cell washing.
Lab Chip. 2015 Jan 7;15(1):331-8. doi: 10.1039/c4lc00903g.

引用本文的文献

1
Microfluidic Platforms for Ex Vivo and In Vivo Gene Therapy.
Biosensors (Basel). 2025 Aug 4;15(8):504. doi: 10.3390/bios15080504.
2
Enhancing Chimeric Antigen Receptor T-Cell Generation via Microfluidic Mechanoporation and Lipid Nanoparticles.
Small. 2025 Apr;21(17):e2410975. doi: 10.1002/smll.202410975. Epub 2025 Mar 19.
3
Mechanically mediated cargo delivery to cells using microfluidic devices.
Biomicrofluidics. 2024 Dec 6;18(6):061302. doi: 10.1063/5.0240667. eCollection 2024 Dec.
4
An efficient low cost means of biophysical gene transfection in primary cells.
Sci Rep. 2024 Jun 8;14(1):13179. doi: 10.1038/s41598-024-62996-y.
5
A hybridized mechano-electroporation technique for efficient immune cell engineering.
J Adv Res. 2024 Oct;64:31-43. doi: 10.1016/j.jare.2023.11.009. Epub 2023 Nov 11.
6
Microfluidic cell squeeze-based vaccine comes into clinical investigation.
NPJ Vaccines. 2023 May 4;8(1):65. doi: 10.1038/s41541-023-00641-x.
7
Coarse-grained molecular simulation of extracellular vesicle squeezing for drug loading.
Phys Chem Chem Phys. 2023 May 3;25(17):12308-12321. doi: 10.1039/d3cp00387f.
8
Current strategies employed in the manipulation of gene expression for clinical purposes.
J Transl Med. 2022 Nov 18;20(1):535. doi: 10.1186/s12967-022-03747-3.
9
Cell Squeeze: driving more effective CD8 T-cell activation through cytosolic antigen delivery.
Immunooncol Technol. 2022 Jul 8;16:100091. doi: 10.1016/j.iotech.2022.100091. eCollection 2022 Dec.
10
Microfluidics delivery of DARPP-32 into HeLa cells maintains viability for in-cell NMR spectroscopy.
Commun Biol. 2022 May 12;5(1):451. doi: 10.1038/s42003-022-03412-x.

本文引用的文献

1
A vector-free microfluidic platform for intracellular delivery.
Proc Natl Acad Sci U S A. 2013 Feb 5;110(6):2082-7. doi: 10.1073/pnas.1218705110. Epub 2013 Jan 22.
3
Endosomal escape pathways for delivery of biologicals.
J Control Release. 2011 May 10;151(3):220-8. doi: 10.1016/j.jconrel.2010.11.004. Epub 2010 Nov 13.
4
A novel intracellular protein delivery platform based on single-protein nanocapsules.
Nat Nanotechnol. 2010 Jan;5(1):48-53. doi: 10.1038/nnano.2009.341. Epub 2009 Nov 22.
6
Generation of human induced pluripotent stem cells by direct delivery of reprogramming proteins.
Cell Stem Cell. 2009 Jun 5;4(6):472-6. doi: 10.1016/j.stem.2009.05.005. Epub 2009 May 28.
7
Knocking down barriers: advances in siRNA delivery.
Nat Rev Drug Discov. 2009 Feb;8(2):129-38. doi: 10.1038/nrd2742.
8
Gene therapy progress and prospects: synthetic polymer-based systems.
Gene Ther. 2008 Aug;15(16):1131-8. doi: 10.1038/gt.2008.105. Epub 2008 Jun 5.
9
Surface-structure-regulated cell-membrane penetration by monolayer-protected nanoparticles.
Nat Mater. 2008 Jul;7(7):588-95. doi: 10.1038/nmat2202. Epub 2008 May 25.
10
Targeting PTPs with small molecule inhibitors in cancer treatment.
Cancer Metastasis Rev. 2008 Jun;27(2):263-72. doi: 10.1007/s10555-008-9113-3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验