Suppr超能文献

从电子健康记录的非结构化文本中学习不良药物相互作用的信号。

Learning signals of adverse drug-drug interactions from the unstructured text of electronic health records.

作者信息

Iyer Srinivasan V, Lependu Paea, Harpaz Rave, Bauer-Mehren Anna, Shah Nigam H

机构信息

Stanford University, Stanford, CA.

出版信息

AMIA Jt Summits Transl Sci Proc. 2013 Mar 18;2013:83-7. eCollection 2013.

Abstract

Drug-drug interactions (DDI) account for 30% of all adverse drug reactions, which are the fourth leading cause of death in the US. Current methods for post marketing surveillance primarily use spontaneous reporting systems for learning DDI signals and validate their signals using the structured portions of Electronic Health Records (EHRs). We demonstrate a fast, annotation-based approach, which uses standard odds ratios for identifying signals of DDIs from the textual portion of EHRs directly and which, to our knowledge, is the first effort of its kind. We developed a gold standard of 1,120 DDIs spanning 14 adverse events and 1,164 drugs. Our evaluations on this gold standard using millions of clinical notes from the Stanford Hospital confirm that identifying DDI signals from clinical text is feasible (AUROC=81.5%). We conclude that the text in EHRs contain valuable information for learning DDI signals and has enormous utility in drug surveillance and clinical decision support.

摘要

药物相互作用(DDI)占所有药物不良反应的30%,而药物不良反应是美国第四大死亡原因。目前上市后监测的方法主要使用自发报告系统来发现DDI信号,并利用电子健康记录(EHR)的结构化部分来验证这些信号。我们展示了一种基于注释的快速方法,该方法使用标准比值比直接从EHR的文本部分识别DDI信号,据我们所知,这是同类方法中的首次尝试。我们制定了一个涵盖14种不良事件和1164种药物的1120个DDI的金标准。我们使用斯坦福医院数百万份临床记录对这个金标准进行的评估证实,从临床文本中识别DDI信号是可行的(曲线下面积=81.5%)。我们得出结论,EHR中的文本包含用于发现DDI信号的有价值信息,并且在药物监测和临床决策支持方面具有巨大的实用价值。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1be5/3814491/0c35e186a3e3/amia_tbi_2013_083f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验