文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于概率模型和解剖约束的半自动肝脏分割。

Semi-automatic liver segmentation based on probabilistic models and anatomical constraints.

机构信息

School of Computer Engineering, Institute of Engineering, Suranaree University of Technology, Nakhon Ratchasima, Thailand.

Department of Computer Science, Faculty of Informatics, Burapha University, Chon Buri, Thailand.

出版信息

Sci Rep. 2021 Mar 17;11(1):6106. doi: 10.1038/s41598-021-85436-7.


DOI:10.1038/s41598-021-85436-7
PMID:33731736
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC7969941/
Abstract

Segmenting a liver and its peripherals from abdominal computed tomography is a crucial step toward computer aided diagnosis and therapeutic intervention. Despite the recent advances in computing methods, faithfully segmenting the liver has remained a challenging task, due to indefinite boundary, intensity inhomogeneity, and anatomical variations across subjects. In this paper, a semi-automatic segmentation method based on multivariable normal distribution of liver tissues and graph-cut sub-division is presented. Although it is not fully automated, the method minimally involves human interactions. Specifically, it consists of three main stages. Firstly, a subject specific probabilistic model was built from an interior patch, surrounding a seed point specified by the user. Secondly, an iterative assignment of pixel labels was applied to gradually update the probabilistic map of the tissues based on spatio-contextual information. Finally, the graph-cut model was optimized to extract the 3D liver from the image. During post-processing, overly segmented nodal regions due to fuzzy tissue separation were removed, maintaining its correct anatomy by using robust bottleneck detection with adjacent contour constraint. The proposed system was implemented and validated on the MICCAI SLIVER07 dataset. The experimental results were benchmarked against the state-of-the-art methods, based on major clinically relevant metrics. Both visual and numerical assessments reported herein indicated that the proposed system could improve the accuracy and reliability of asymptomatic liver segmentation.

摘要

从腹部计算机断层扫描中分割肝脏及其周围组织是计算机辅助诊断和治疗干预的关键步骤。尽管计算方法最近取得了进展,但由于边界不确定、强度不均匀以及个体之间的解剖差异,准确分割肝脏仍然是一项具有挑战性的任务。本文提出了一种基于肝脏组织多变量正态分布和图割细分的半自动分割方法。虽然它不是完全自动化的,但该方法最少需要人工交互。具体来说,它包括三个主要阶段。首先,从用户指定的种子点周围的内部斑块构建针对特定主体的概率模型。其次,应用迭代像素标签分配,根据空间上下文信息逐步更新组织的概率图。最后,优化图割模型以从图像中提取 3D 肝脏。在后处理过程中,由于组织分离模糊而导致过度分割的节点区域被删除,通过使用具有相邻轮廓约束的稳健瓶颈检测来保持其正确的解剖结构。该系统在 MICCAI SLIVER07 数据集上实现并验证。根据主要的临床相关指标,将实验结果与最先进的方法进行了基准测试。本文报告的视觉和数值评估表明,该系统可以提高无症状肝脏分割的准确性和可靠性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/3678b8350a5f/41598_2021_85436_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/78dbb8660eec/41598_2021_85436_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/a9c096b042d6/41598_2021_85436_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/7da22b0786b9/41598_2021_85436_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/6281806a2789/41598_2021_85436_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/cd2b2cf07cde/41598_2021_85436_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/1f56bcec58e0/41598_2021_85436_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/eb11ab05de6d/41598_2021_85436_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/5d52808f2af8/41598_2021_85436_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/6c247af50bde/41598_2021_85436_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/5f24bc0f70d0/41598_2021_85436_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/82a3037a88f2/41598_2021_85436_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/dfa946426384/41598_2021_85436_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/2094ce5921d8/41598_2021_85436_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/c270816de533/41598_2021_85436_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/3678b8350a5f/41598_2021_85436_Fig15_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/78dbb8660eec/41598_2021_85436_Fig1_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/a9c096b042d6/41598_2021_85436_Fig2_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/7da22b0786b9/41598_2021_85436_Fig3_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/6281806a2789/41598_2021_85436_Fig4_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/cd2b2cf07cde/41598_2021_85436_Fig5_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/1f56bcec58e0/41598_2021_85436_Fig6_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/eb11ab05de6d/41598_2021_85436_Fig7_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/5d52808f2af8/41598_2021_85436_Fig8_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/6c247af50bde/41598_2021_85436_Fig9_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/5f24bc0f70d0/41598_2021_85436_Fig10_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/82a3037a88f2/41598_2021_85436_Fig11_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/dfa946426384/41598_2021_85436_Fig12_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/2094ce5921d8/41598_2021_85436_Fig13_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/c270816de533/41598_2021_85436_Fig14_HTML.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1aea/7969941/3678b8350a5f/41598_2021_85436_Fig15_HTML.jpg

相似文献

[1]
Semi-automatic liver segmentation based on probabilistic models and anatomical constraints.

Sci Rep. 2021-3-17

[2]
Efficient liver segmentation in CT images based on graph cuts and bottleneck detection.

Phys Med. 2016-11

[3]
Automatic 3D CT liver segmentation based on fast global minimization of probabilistic active contour.

Med Phys. 2023-4

[4]
Automatic 3D liver location and segmentation via convolutional neural network and graph cut.

Int J Comput Assist Radiol Surg. 2017-2

[5]
3D automatic liver segmentation using feature-constrained Mahalanobis distance in CT images.

Biomed Tech (Berl). 2016-8-1

[6]
Blood vessel-based liver segmentation using the portal phase of an abdominal CT dataset.

Med Phys. 2013-11

[7]
Automatic liver segmentation from abdominal CT volumes using graph cuts and border marching.

Comput Methods Programs Biomed. 2017-5

[8]
Liver segmentation from abdominal CT volumes based on level set and sparse shape composition.

Comput Methods Programs Biomed. 2020-10

[9]
Segmentation of liver and spleen based on computational anatomy models.

Comput Biol Med. 2015-12-1

[10]
Shape-intensity prior level set combining probabilistic atlas and probability map constrains for automatic liver segmentation from abdominal CT images.

Int J Comput Assist Radiol Surg. 2015-12-8

引用本文的文献

[1]
Automated AI-based segmentation of canine hepatic focal lesions from CT studies.

Front Vet Sci. 2025-8-6

[2]
Prior knowledge of anatomical relationships supports automatic delineation of clinical target volume for cervical cancer.

Sci Rep. 2025-7-4

[3]
Customized -RCNN and hybrid deep classifier for liver cancer segmentation and classification.

Heliyon. 2024-5-6

[4]
Algorithms for Liver Segmentation in Computed Tomography Scans: A Historical Perspective.

Sensors (Basel). 2024-3-8

[5]
Recent advances in computerized imaging and its vital roles in liver disease diagnosis, preoperative planning, and interventional liver surgery: A review.

World J Gastrointest Surg. 2023-11-27

[6]
A combined encoder-transformer-decoder network for volumetric segmentation of adrenal tumors.

Biomed Eng Online. 2023-11-8

[7]
nnU-Net Deep Learning Method for Segmenting Parenchyma and Determining Liver Volume From Computed Tomography Images.

Ann Surg Open. 2022-6

[8]
Trans-arterial positive ICG staining-guided laparoscopic liver watershed resection for hepatocellular carcinoma.

Front Oncol. 2022-7-22

[9]
Portal vein embolization: rationale, techniques, outcomes and novel strategies.

Hepat Oncol. 2021-9-21

[10]
Symmetric Reconstruction of Functional Liver Segments and Cross-Individual Correspondence of Hepatectomy.

Diagnostics (Basel). 2021-5-10

本文引用的文献

[1]
Automatic atlas-based liver segmental anatomy identification for hepatic surgical planning.

Int J Comput Assist Radiol Surg. 2019-10-15

[2]
H-DenseUNet: Hybrid Densely Connected UNet for Liver and Tumor Segmentation From CT Volumes.

IEEE Trans Med Imaging. 2018-6-11

[3]
Transformation of the Multivariate Generalized Gaussian Distribution for Image Editing.

IEEE Trans Vis Comput Graph. 2018-10

[4]
Fully automatic liver segmentation in CT images using modified graph cuts and feature detection.

Comput Biol Med. 2018-2-22

[5]
Liver segmentation: indications, techniques and future directions.

Insights Imaging. 2017-8

[6]
Automatic liver segmentation based on appearance and context information.

Biomed Eng Online. 2017-1-14

[7]
Liver Segmentation on CT and MR Using Laplacian Mesh Optimization.

IEEE Trans Biomed Eng. 2017-9

[8]
Automatic 3D liver segmentation based on deep learning and globally optimized surface evolution.

Phys Med Biol. 2016-12-21

[9]
Efficient liver segmentation in CT images based on graph cuts and bottleneck detection.

Phys Med. 2016-11

[10]
Automatic 3D liver location and segmentation via convolutional neural network and graph cut.

Int J Comput Assist Radiol Surg. 2017-2

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索