Suppr超能文献

从轴突和树突密度场估计神经元连接。

Estimating neuronal connectivity from axonal and dendritic density fields.

机构信息

Computational Neuroscience Group, Department of Integrative Neurophysiology, Center for Neurogenomics and Cognitive Research, VU University Amsterdam Amsterdam, Netherlands.

出版信息

Front Comput Neurosci. 2013 Nov 25;7:160. doi: 10.3389/fncom.2013.00160. eCollection 2013.

Abstract

Neurons innervate space by extending axonal and dendritic arborizations. When axons and dendrites come in close proximity of each other, synapses between neurons can be formed. Neurons vary greatly in their morphologies and synaptic connections with other neurons. The size and shape of the arborizations determine the way neurons innervate space. A neuron may therefore be characterized by the spatial distribution of its axonal and dendritic "mass." A population mean "mass" density field of a particular neuron type can be obtained by averaging over the individual variations in neuron geometries. Connectivity in terms of candidate synaptic contacts between neurons can be determined directly on the basis of their arborizations but also indirectly on the basis of their density fields. To decide when a candidate synapse can be formed, we previously developed a criterion defining that axonal and dendritic line pieces should cross in 3D and have an orthogonal distance less than a threshold value. In this paper, we developed new methodology for applying this criterion to density fields. We show that estimates of the number of contacts between neuron pairs calculated from their density fields are fully consistent with the number of contacts calculated from the actual arborizations. However, the estimation of the connection probability and the expected number of contacts per connection cannot be calculated directly from density fields, because density fields do not carry anymore the correlative structure in the spatial distribution of synaptic contacts. Alternatively, these two connectivity measures can be estimated from the expected number of contacts by using empirical mapping functions. The neurons used for the validation studies were generated by our neuron simulator NETMORPH. An example is given of the estimation of average connectivity and Euclidean pre- and postsynaptic distance distributions in a network of neurons represented by their population mean density fields.

摘要

神经元通过延伸轴突和树突分支来支配空间。当轴突和树突彼此靠近时,神经元之间就可以形成突触。神经元在形态和与其他神经元的突触连接上差异很大。分支的大小和形状决定了神经元支配空间的方式。因此,一个神经元可以用其轴突和树突的“质量”的空间分布来描述。通过对神经元几何形状的个体变化进行平均,可以获得特定神经元类型的“质量”密度场的群体平均值。神经元之间的候选突触连接可以根据它们的分支直接确定,也可以根据它们的密度场间接确定。为了确定何时可以形成候选突触,我们之前开发了一种标准,该标准定义了轴突和树突线片段应在 3D 中交叉,并且正交距离小于阈值。在本文中,我们开发了一种新的方法来将该标准应用于密度场。我们表明,从密度场计算的神经元对之间的接触数估计与从实际分支计算的接触数完全一致。然而,连接概率和每个连接的预期接触数的估计不能直接从密度场计算,因为密度场不再携带突触接触空间分布的相关结构。相反,这两个连通性度量可以通过使用经验映射函数从预期的接触数中估计。用于验证研究的神经元是由我们的神经元模拟器 NETMORPH 生成的。给出了一个使用其群体平均密度场表示的神经元网络中平均连通性和欧式前后突触距离分布的估计示例。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4481/3839411/8d843c43f86f/fncom-07-00160-g0001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验