Suppr超能文献

模拟微重力对少突胶质细胞发育的影响:对中枢神经系统修复的启示

Impact of simulated microgravity on oligodendrocyte development: implications for central nervous system repair.

作者信息

Espinosa-Jeffrey Araceli, Paez Pablo M, Cheli Veronica T, Spreuer Vilma, Wanner Ina, de Vellis Jean

机构信息

Semel Institute for Neuroscience and Human Behavior, David Geffen School of Medicine at UCLA, Intellectual and Developmental Disabilities Research Center, Los Angeles, California, United States of America.

出版信息

PLoS One. 2013 Dec 4;8(12):e76963. doi: 10.1371/journal.pone.0076963. eCollection 2013.

Abstract

We have recently established a culture system to study the impact of simulated microgravity on oligodendrocyte progenitor cells (OPCs) development. We subjected mouse and human OPCs to a short exposure of simulated microgravity produced by a 3D-Clinostat robot. Our results demonstrate that rodent and human OPCs display enhanced and sustained proliferation when exposed to simulated microgravity as assessed by several parameters, including a decrease in the cell cycle time. Additionally, OPC migration was examined in vitro using time-lapse imaging of cultured OPCs. Our results indicated that OPCs migrate to a greater extent after stimulated microgravity than in normal conditions, and this enhanced motility was associated with OPC morphological changes. The lack of normal gravity resulted in a significant increase in the migration speed of mouse and human OPCs and we found that the average leading process in migrating bipolar OPCs was significantly longer in microgravity treated cells than in controls, demonstrating that during OPC migration the lack of gravity promotes leading process extension, an essential step in the process of OPC migration. Finally, we tested the effect of simulated microgravity on OPC differentiation. Our data showed that the expression of mature oligodendrocyte markers was significantly delayed in microgravity treated OPCs. Under conditions where OPCs were allowed to progress in the lineage, simulated microgravity decreased the proportion of cells that expressed mature markers, such as CC1 and MBP, with a concomitant increased number of cells that retained immature oligodendrocyte markers such as Sox2 and NG2. Development of methodologies aimed at enhancing the number of OPCs and their ability to progress on the oligodendrocyte lineage is of great value for treatment of demyelinating disorders. To our knowledge, this is the first report on the gravitational modulation of oligodendrocyte intrinsic plasticity to increase their progenies.

摘要

我们最近建立了一种培养系统,以研究模拟微重力对少突胶质前体细胞(OPCs)发育的影响。我们将小鼠和人类的OPCs暴露于由三维回转器机器人产生的短时间模拟微重力环境中。我们的结果表明,通过包括细胞周期时间缩短在内的几个参数评估,啮齿动物和人类的OPCs在暴露于模拟微重力时表现出增强且持续的增殖。此外,使用培养的OPCs的延时成像在体外检测了OPCs的迁移。我们的结果表明,与正常条件相比,模拟微重力刺激后OPCs的迁移范围更大,并且这种增强的运动性与OPCs的形态变化有关。正常重力的缺失导致小鼠和人类OPCs的迁移速度显著增加,并且我们发现,在微重力处理的细胞中,迁移的双极OPCs的平均前导突起明显长于对照组,这表明在OPCs迁移过程中,重力的缺失促进了前导突起的延伸,这是OPCs迁移过程中的一个关键步骤。最后,我们测试了模拟微重力对OPCs分化的影响。我们的数据表明,在微重力处理的OPCs中,成熟少突胶质细胞标志物的表达显著延迟。在允许OPCs沿着谱系发育的条件下,模拟微重力降低了表达成熟标志物(如CC1和MBP)的细胞比例,同时保留未成熟少突胶质细胞标志物(如Sox2和NG2)的细胞数量增加。开发旨在增加OPCs数量及其在少突胶质细胞谱系上发育能力的方法对于脱髓鞘疾病的治疗具有重要价值。据我们所知,这是关于重力调节少突胶质细胞内在可塑性以增加其后代数量的首次报道。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/7ec3/3850904/fc2c67969155/pone.0076963.g001.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验